Stat 311: HW 10, not due, solutions to be posted before final

Fritz Scholz

1. Section 13.4, problem 1. Basically you test the hypothesis p; = ... = ps = 1/8, where p; denotes the probability
that the winner comes from starting position i. This is based on assigning the horses at random to the starting
positions and the hypothesis assumption that starting position has no influence on who the winner is. Thus the
winner has equal chance of coming from any of the 8 starting positions. Since no significance level o is specified,
just compute the p-value and comment on the strength of the evidence against the hypothesis.

horses <- function () {
finish <- ¢(29,19,18,25,17,10,15,11)
k <- length(finish)
n <= sum(finish)
p <- rep(l/k, k)
e <- n*p
X2 <- sum((finish-e)"2/e)
G2 <- 2*sum(finish*log(finish/e))
pX2 <- l-pchisq(X2,k-1
pG2 <- 1-pchisq(G2,k-1)
out <- c(X2,pX2,G2,pG2)
names (out) <- c("X2","p-value(X2)","G2", "p-value(G2)")
out
}
with the following result when calling horses()
> horses|()
X2 p-value (X2) G2 p-value (G2)
16.33333333 0.02223948 16.13810519 0.02388413

At level oo = 0.05 one should reject the hypothesis that starting position has no influence on which horse is the
winner, since the p-value is < 0.05 for either test statistic.

2. Section 13.4, problem 3. Again, no o is specified. Thus compute the p-value and comment on the strength of the
evidence against the hypothesis that the cell probabilities in (a) are correct.

(a) The respective cell probabilities (by independence) should be

33 9

(b)

recessive <- function(){

obs <- ¢(926,288,293,104)

n <- sum(obs)

e <- n*c(9/16,3/16,3/16,1/16)
X2 <- sum((obs-e)"2/e)

G2 <- 2*sum(obs*log(obs/e))
pX2 <- 1l-pchisq (X2, 3)

pG2 <- 1l-pchisq(G2, 3)

out <- c(X2,pX2,G2,pG2)

names (out) <- c("X2","p-value(X2)","G2","p-value(G2)")
out

}
with following result when calling recessive ()
> recessive()
X2 p-value (X2) G2 p-value (G2)
1.4687220 0.6895079 1.4775868 0.6874529

Clearly there is no evidence against the assumed probabilities for the 4 events, since the p-values are quite large.

3. Section 13.4, problem 5. Note that log;,(x) gives you that number y such that 10° = x, e.g., log;,(1000) = 3 since
103 = 1000. Furthermore, we have

log;o(x) >0 forx>1 (1)
and
y=logo(x1-x2...-x,) =1ogo(x1) +10go(x2) + ... +10g;o(xn) =y1 +y2+ ...+ ¥n 2)
since

1Ot = 1O 10210 = XXy = 10Y

Use the properties (1) and (2) to do part (a). In R the command p <- 1ogl0(1+1/(1:9)) would give you the vector
of required cell probabilities. You can also check sum (p).

Benford’s law (see http://en.wikipedia.org/wiki/Benford%27s_law) is quite useful in detecting fraudulent
activities when numbers are just made up, such as in accounting when cooking the books, or in faking election
results. The latter issue was most recently examined w.r.t. the election results in Iran.
http://blog.jgc.org/2009/06/benfords-law-and-iranian-election.html

Since no « is specified, work with the p-value to assess the evidence.

(a) Since 1+ 1/x> 1 forx=1,...,9 we have f(x) =log;,(1+1/x) > 0 and

1 1 1 1

2 3 9 10
= logjp | 7) +logio(5 |+ Flogp| g) +logi | 3

2 3 4 8 9 10
— 10g10 < ‘‘‘‘‘ N > :10g10(10) — 1

i.e., f(x) is a pmf.
(b)

Benford <- function() {

obs <- ¢(107,55,39,22,13,18,13,23,15)
k <- length (obs)

n <- sum(obs)

p <= loglO(1+1/(1:9))

e <- n*p

X2 <- sum((obs-e)"2/e)
G2 <- 2*sum(obs*log(obs/e))
pX2 <- 1l-pchisq(X2,k-1)
pG2 <- 1-pchisq(G2,k-1)
out <- c¢(X2,pX2,G2,pG2)
names (out) <- c("X2","p-value(X2)","G2","p-value (G2)")
out
}
calling Benford() yields
> Benford()
X2 p-value (X2) G2 p-value (G2)
14.75964770 0.06399094 15.55588649 0.04919622

The p-values are borderline significant at oo = 0.05.

4. Section 14.6, problem 7. Rather than just calling cor.test (sister,brother, conf.level=0.9) for appropri-
ate data vectors sister and brother, write yourself a function (using the steps on slides 27-28 in Ch. 14)

Conf.Int <- function(x,y,conf.level) {
}

that computes P, then computes @, then computes the interval end points zeta.L and zeta.U for , and from that
computes the interval endpoints rho.L and rho.U for p and returns as output ¢ (rho.L, rho.U) . Compare the results
from using

Conf.Int(sister,brother,conf.level =0.9)

with that when using
rho.test(sister,brother,conf.level = 0.9)

You may use the fact that cor (x, y) returns the sample correlation coefficient for the data vector x and y.

Conf.Int <- function(x,y,conf.level) {
rho.hat <- cor(x,y)

n <- length (x)

zeta.hat <- 0.5*log((l+rho.hat)/(l1-rho.hat))
alpha <- l-conf.level

gz <- gnorm(l-alpha/2)

zeta.L <- zeta.hat -gz/sqrt (n-3)

zeta.U <- zeta.hat +gz/sqrt (n-3)

rho.L <- (exp(2*zeta.L)-1)/(exp(2*zeta.L)+1)
rho.U <- (exp(2*zeta.U)-1)/ (exp(2*zeta.U)+1)
c(rho.L,rho.U)

}

with the following results when calling Conf.Int and cor.test
> sister <- c(69,64,65,63,65,62,65,64,66,59,62)

> brother <- c(71,68,66,67,70,71,70,73,72,65,66)

> Conf.Int (sister,brother, .9)

[1] 0.04842215 0.83714300

> cor.test (sister,brother,conf.level=.9)
Pearson’s product-moment correlation

data: sister and brother
t = 2.0175, df = 9, p-value = 0.07442
alternative hypothesis: true correlation is not equal to 0
90 percent confidence interval:
0.04842215 0.83714300
sample estimates:
cor
0.5580547

The confidence intervals coincide, i.e., it shows that cor. test uses the approximate procedure given in slides 27-28
for Ch. 14.

