
An Interesting Example

Math& 148

Consider the function
f(x) = e−

1

x
2

(a variation is e
−

1

|x| ). The domain is given by R \ {0} , but we can extend the
function by continuity, since, clearly

lim
x→0

f(x) = 0

to

f(x) =

{

e
−

1

x
2 x 6= 0

0 x = 0

The interesting feature about this function is that all derivatives are equal to 0
at x = 0, but the function is not constant at all.

Remark The fact that this is “unexpected” may not be obvious right now. Fact
is that the following theorem holds (you will probably see it in your third
- or higher - calculus class)

Suppose f has n continuous derivatives at x = x0. Then (Taylor’s

Theorem)

f(x) = f (x0) +

n
∑

k=1

f (k)

k!
(x0) (x− x0)

k
+R (x, x0)

where

lim
x→x0

R (x, x0)

(x− x0)
n = 0

This suggests a tantalizing possibility: maybe some/most/nice func-
tions (more precisely, functions with derivatives of all orders) can be

thought of as “sum of an infinite polynomial”,
∑

∞

k=0 ak (x− x0)
k
. It

turns out that only “very nice” functions can be represented as that
(these are now known as real analytic functions), but that “most”
(that is something that can be made more precise, but is clearly
fuzzy right now) functions with infinitely many derivatives cannot
be represented as sums of an infinite sum (which is now known as a
series). Of course, if our function fell in this category, it should be
constantly equal to 0, by choosing x0 = 0, but that’s obviously not
the case.
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Proof

This is a very interesting example, especially in view of future issues concerning the
possibility of expressing complicated functions as “polynomials of infinite degree” (or,
more scientifically, as “power series”). Aside from future implications, it is a very
interesting example of a function having all derivatives, all derivatives being equal to
0 at a given point, but not being constant. To show that, indeed, all derivatives are
0 at x =0, we start by computing the first derivative (since the function is piecewise

defined, it would not be precise to compute the derivative of e
−

1

x
2 for x 6= 0, and then

see how it behaves as x → 0 – or, better said, to show that this would provide the
correct answer too we would need a theorem that we have not stated – however, going
by the book ends up with the same result as we go on to show). The ratio for x = 0 is

e
−

1

x
2

x

Let’s rewrite the problem for better visibility. Set t = 1

x2 , so that we are now
checking on

lim
t→∞

t
1

2 e
−t

Writing this out as

lim
t→∞

t
1

2

et

and applying L’Hospital’s Rule, we see that this limit is equal to

lim
t→∞

1

2t
1

2 et
= 0

since both terms in the denominator are now going to infinity. Now, the first derivative
will be

f
′(x) =

{

2

x3 e
−

1

x
2 x 6= 0

0 x = 0

Computing f ′′(0), we need to evaluate

lim
x→0

2

x3 e
−

1

x
2

x
= lim

x→0

2e
−

1

x
2

x4

Using, for simplicity, the substitutiont = 1

x2 , this translates into

lim
t→∞

t
2
e
−t = lim

t→∞

t2

et

and applying L’Hospital’s Rule twice shows that this limit is also 0. You can see
that a pattern is developing: as we compute higher and higher derivatives, we end up
evaluating limits like

lim
t→∞

tα

et

for higher and higher α > 0. By applying L’Hospital’s Rule enough times, we
end up with a limit that is obviously equal to 0. Hence, the observation that
for any n, f (n)(0) = 0


