
Another Angle On Derivatives

Math& 148

The content here introduces you to two topics that are not well represented
in common textbooks. One is how to use what is basically an idea from calcu-
lus, to study the local behavior of polynomials, without explicitly mentioning
derivatives. The other is an introduction to what is known as Taylor’s Formula,
an extremely useful tool on th study and the approximation of functions, that
is usually postponed to advanced calculus classes, but that need not be.

Part I. Precalculus

1 Studying Polynomials

Even though polynomials are very simple functions (for example, given an exact
value for x , we can compute the exact corresponding value of the polynomial
via simple products and sums), it is not instantaneous to figure out how the
graph will look like near a given value of x , as soon as the degree is not very
low. We can however find that out using a simple trick.

1.1 Polynomials near x = 0

This fact is well known: for a number a , such that |a| < 1, the higher the power
n in an, the smaller its absolute value. This feature accentuates the closer a is
to 0 . For example, if a = 10−1 ,an = 10−n , but if a = 10−3, an = 10−3n, so
that an

a
goes from 10−n+1 to 10−3(n+1). Hence, if if x is lose to 0 , each of its

successive powers becomes quickly negligible. So, if |x| is sufficiently small, x2

will be “invisible” when compared to x . Hence, for a polynomial like

p(x) = 4x7 − 2x6 + x5 + 3x4 − 2x2 − 6x+ 3

we can say

• p(0) = 3 (that’s easy)
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• If |x| is really close to 0, then p(x) ≈ 3−6x. This means that the graph of
p will look almost like the graph of the straight lien 3−6x. Geometrically,
this means that the tangent line to the graph at x = 0 has slope −6, and
the graph crosses the y−axis going from above 3 to below 3, that is it is
decreasing near x = 0, with approximate slope −6:

poly1.jpeg

This can be pushed further. If |x| is still small, but not as small, we may keep
the next term, −2x2, ignoring higher powers. That suggests that the graph of
p, near 0, will look like the graph of −2x2 − 6x+ 3, an “open down” parabola,
on its decreasing side, which means that the graph will be concave down near
0:

poly2.jpeg

This could be pushed even further, but you get the idea. It’s even more
interesting when, for example, the linear term is missing. Looking at q(x) =
4x4 − 3x3 − 2x2 + 1, we have q(0) = 1, but now the first interesting term to
consider when |x| is close, enough to, but not equal to, 0 is 1 − 2x2. This is
a parabola open down, with vertex at (0, 1). This is a maximum point for the
parabola, and this allows us to realize that this is a (local) maximum point for
q(x):

poly3.jpeg

1.2 Polynomials Near Any Value of x

It’s nice to know about the graph near 0, but we will also be interested in the
graph at any other point. This can be easily reduce to the previous case with
one of two completely equivalent tricks:

1. We can shift our graph horizontally so that the value we are interested in

is shifted to x = 0

2. When our polynomial is written as a function of x, we are looking at it as
a function of the difference between our point of interest and 0. If we are
interested in looking at our polynomial near another point, call it x0, we
can re-write it in terms of the difference between x and x0.

The approach in point 1 is discussed in a file you can find at
http://faculty.washington.edu/~fm1/Materials/index.html
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The second approach goes like this. Let’s call, for convenience, x− x0 = h,
and let’s re-write our polynomial as a polynomial with h as the variable. It’s
probably best to do this on a concrete example – it will be easy to do the
same manipulation on any other polynomial. Let’s say we want to look at
p(x) = 4x4 − 3x3 + 2x2 − 5x + 2 near x0 = 2. Let’s re-write this by setting
x = x0 + (x− x0) = 2 + h:

4 (2 + h)4 − 3 (2 + h)3 + 2 (2 + h)2 − 5 (2 + h) + 2

Now, since we look at this as a polynomial in h, let’s open up the parentheses
and put the result in descending powers of h:

4
(

h4 + 8h3 + 24h2 + 32h+ 16
)

−3
(

h3 + 6h2 + 12h+ 8
)

+2
(

h2 + 4h+ 4
)

−5(h+2)+2 =

= 4h4 + 29h3 + 80h2 + 95h+ 40 (1)

Using the same approach we used in 1.1, since we are looking at what hap-
pens when h is close to 0, we see that the tangent line to our polynomial at
x = 2 is 95x+ 40, and that the graph is close to the parabola 80h2 + 95h+ 40,
and open down parabola, increasing at this point, so the graph is concave up
here.

1.3 How To Go Beyond Polynomials?

All the above is pure Algebra. But how could we extend this idea to functions
like ex, or lnx , or even more complicated ones? Well, that was solved by the
genius of Newton and Leibniz, back in the 17th Century, and is the topic most of
our class. In fact, one way to look at derivatives is as coefficients of polynomials
that are “close” to our function.

Part II. Calculus

2 Polynomials and Taylor’s Formula

If you go back to our previous part, and look closer at the calculations, you will
notice that the slope of the tangent to a polynomial at x = a computed there
is precisely p′(a), as defined in our calculus book. If you look even closer, you
may notice that the coefficient of the quadratic term in, for example (1) is equal

to p′′(2)
2 ! Let’s look at all this in more detail.

The point in the discussion on polynomials like p(x) was that

• when x is close to a, p(x) is “close” to p(a) – that is, p(x)is a continuous
function

• when x is very close to a, p(x)−p(a) is almost proportional to x−a (that
is the linear term we emphasized in (1))
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• when x is still very close to a, but not as much, p(x)−p(a) is almost equal
to a quadratic function, as emphasized in (1)

• this discussion could be pushed further keeping third, fourth, .. powers

A general function can be very ugly (a simple example could be the function
that takes the value 1 when x is irrational, and 0 when x is rational – but
people have come up with much uglier functions). A first condition that limits
the “ugliness” is continuity (when x− a is small, so is f(x)− f(a)). Still, even if
they are not very simple to describe, there are very ugly continuous functions.

To come up with “nicer” functions, we can require that they behave not too
differently from polynomials around any given point. To make this precise, let’s
suggest the following first conditions on f(x):

Condition0 f(x) is continuous at x = a. This means that f(x)−f(a) = E0(x, a)
, where limx→a E0(x, a) = 0

Condition1 We assume something more about the “error term” E0: namely that
it goes to 0 a t speed at least equal to the speed of x − a. That means,
in formulas, that E0(x, a) = c1(x − a) + E1(x, a), where E1(x, a) goes to

0 faster that x− a, or, in formulas,limx→a
E1(x,a)
x−a

= 0

This means, in turn, that

f(x)− f(a) = c1(x− a) + E1(x, a)

and, dividing this equality by x− a,

f(x)− f(a)

x− a
= c1 +

E1(x, a)

x− a

Taking the limit of both sides, we see that this implies that f is differentiable at
x = a, and that c1 = f ′(a). We could also argue in reverse: if we assume that f
is differentiable at x = a, then the previous calculation applies, and f(x)− f(a)
is “almost proportional” to x− a, with f ′(a)as the proportionality constant.

We now have that, for a differentiable function,

f(x)− f(a) = f ′(a)(x − a) + E1(x, a)

wherelimx→a
E1(x,a)
x−a

= 0.
Still using our study of polynomials as a guide, we might consider the case

where E1 is not only faster than x − a in going to 0, but has actually the
same speed as (x− a)2. That is, we consider the “nicer” case, when E1(x, a) =

c2(x− a)2 + E2(x, a) with limx→a
E2(x,a)
(x−a)2 = 0. This implies

f(x)− f(a)− f ′(a)(x − a) = c2(x− a)2 + E2(x, a) (2)

Let’s divide this equality by (x− a)2:

f(x)− f(a)− f ′(a)(x− a)

(x− a)2
= c2 +

E2(x, a)

(x− a)2
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Letting x → a, he right hand side has limit c2, so the left hand site has a limit
as well. To determine it, we can use L’Hospital’s rule and applying it results in

lim
x→a

f(x)− f(a)− f ′(a)(x− a)

(x − a)2
= lim

x→a

f ′(x)− f ′(a)

2(x− a)

Hence, we see that f ′ is differentiable at x = a, and the left hand ahas limit
f ′′(a)

2 . One cal also argue in reverse, and, assuming that f ′′(a) exists, see that

(2) holds, and that c2 = f ′′(a)
2 . Thus, if all of this holds,

f(x)− f(a) = f ′(a)(x− a) +
f ′′(a)

2
(x − a)2 + E2(x, a)

We don’t need to stop here. If, again in analogy to polynomials, that our
function is so nice that E2(x, a) vanishes not only faster than (x − a)2, but
actually at a speed at least as fast as (x − a)3, we can write that E2(x, a) =

c3(x− a)3 + E3(x, a), with limx→a
E3(x,a)
(x−a)3 = 0, and

f(x)− f(a)− f ′(a)(x− a)−
f ′′(a)

2
(x − a)2 = c3(x− a)3 + E3(x, a) (3)

Now, divide this equality by (x− a)3:

f(x) − f(a)− f ′(a)(x − a)− f ′′(a)
2 (x− a)2

(x− a)3
= c3 +

E3(x, a)

(x− a)3

As x → a the right hand side has limit c3, hence the left hand side has a limit
as well. To find it we can again apply L’Hospital’s Rule. A first application
results in

f ′(x) − f ′(a)− f ′′(a)(x− a)

3(x− a)2

A second application results in

f ′′(x)− f ′′(a)

6(x− a)

Since this is known to have a limit, we see that (3) implies that f ′′ is differen-
tiable, that is that f has at least three derivatives, and

c3 =
f ′′′(a)

2 · 3

As before, if we assume that f has three derivatives we can proceed in reverse
and conclude that (3) holds.

We can go on as long as f has more derivatives, following the same logic. If
we repeat this procedure n times, we end up with Taylor’s Formula:

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2
(x−a)2+

f ′′′(a)

2 · 3
(x−a)3+· · ·+

f (n)(a)

n!
(x−a)n+En(x, a)

(4)

where limx→a
En(x,a)
(x−a)n = 0. By the way. n! is read as “n factorial”, and is equal

to 1 · 2 · 3 · . . . · (n− 1) · n.
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3 Improving to Taylor’s Theorem

(4) is a remarkable result, indicating that, if f has enough derivatives, as long
as we are looking at small deviations from a point, the graph of f will look very
much like that of a polynomial1. However, the formula, as listed, is less useful if
our goal is to calculate an approximation to f(x) for functions that are difficult
to compute by hand. The reason is that we only know what the error term En

does in the limit, but there is no explicit estimate of its value for fixed x and a.
This limitation is solved by several forms that can be given to the error term
(usually called the remainder), forms that do to provide its exact value (if they
did, we would have an exact numerical value for f(x), which we don’t have, in
general), but allow us to find an upper bound to the error. These require an
additional derivative.

The simplest of these forms is the Legendre form:

En(x, a) =
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1 (5)

where ξ is some point between a and x. We don’t know the exact value of ξ,
but we often can find a number M such that

∣

∣f (n+1)(ξ)
∣

∣ ≤ M , which allows us
to bound the error by

|En(x, a)| ≤
M

(n+ 1)!
(x− a)n+1

Most proofs of (5) are somewhat technical (at least that is my feeling – for
example one uses a clever application of the so-called Cauchy mean value the-
orem). One proof that is more straightforward than most is due to Zvonimir
Sikic (1990) and is quickly summarized at the end (it requires some basic facts
about integral calculus).

1 There is a catch here: for this formula to be useful we need to have at least one derivative

that is not zero. Fact is there are functions such that all their derivatives at a point are zero,

and yet are not constant. The standard example is e

−

1

x
2 at x = 0. If you are curious, you

can look at the file “zeroderivative.pdf” linked from the same page as this.
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As a simple application, consider a rough estimate for ln(1.1). We write this
as f(0.1) where f(x) = ln(1 + x). With some patience, we can calculate

f(0) = 0, f ′(0) = 1, f ′′(0) = −
1

2

while f ′′′(x) = 2
(1+x)3 . The third derivative is decreasing as we go from 0 to 0.1,

so
∣

∣f (n+1)(ξ)
∣

∣ ≤ f ′′′(0) = 2 and

f(1.1) = 10−1 −
1

2
· 10−2 + E2

|f(1.1)− 0.095| ≤ 2 · 10−3

giving us an estimate for ln(1.1) correct to about three decimal digits (a com-
puter will evaluate„ approximately, ln(1.1) ≈ 0.0953101798043249)

A Proof Of (5)

If we are familiar with the following two basic facts of integral calculus, we can
come u with a fairly straightforward proof of (5).

1. The Fundamental Theorem of Calculus:
´ b

a
f ′(x)dx = f(b)− f(a)

2. The Mean Value Theorem:
´ b

a
g(x)h(x)dx = g(ξ)

´ b

a
h(x)dx where ξ is a

number between a and b.

Consider now a differentiable function f at points x and y. We have

f(x) − f(y) = E0(x, y)

If f is differentiable, so is E0. Deriving with respect to y,

fy(y) = −E′

0(y) (6)

(muting the dependence of E0on x, here and in all the following, also for sub-
sequent error terms). Integrating (6) between x an y

E0(y) = −

ˆ y

x

fy(t)dt = −fy(ξ)(y − x)

by the mean value theorem, so that

f(x) = f(y) + f ′(ξ)(x − y) (7)

which is (5) for n = 0.
We can now repeat, by considering (7) and replacing ξ with y, and the

consequent error:

f(x) = f(y) + fy(y)(x − y) + E1(y) (8)
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We have E1(x) = 0, and differentiating with respect to

0 = f ′(y) + f ′′(y)(x − y)− f ′(y) + E′

1(y)

so that
E′(y) = −f ′′(y)(x− y)

and integrating from x to y, and applying the mean value theorem,

E1(y) = −

ˆ y

x

f ′′(t)(x − t)dt = −f ′′(ξ)

ˆ y

x

(x− t)dt = f ′′(ξ)
(x − y)2

2

Inserting in (8)

f(x) = f(y) + f ′(y)(x − y) + f ′′(ξ)
(x − y)2

2

Repeating for further derivatives results in (4), with y in place of a in the
formula.


