Slope of Tangents to Rational Functions

More Calculus without Calculus

1 Polynomials

Let's quickly review how we can find the slope of the tangent to the graph of a polynomial at, say, $x=a$. We start by noting that, for very small $|x|$, $x^{2} \ll|x|$ (and, of course, $\left|x^{3}\right| \ll x^{2}$, and so on). This allows us to think that in a polynomial of any degree (say, $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$, when we are looking at the y-intercept, and the graph right there, it will have to look very much like that of the straight line $a_{1} x+a_{0}$, which, reasonably enough, should b the tangent line to the graph.

To find the tangent at any other point, we just shift the point so that it becomes the y-intercept, and apply the preceding argument. Since we only performed a horizontal shift, the shape of the curve did not change, and the slope of the tangent to the new y-intercept will be the same as the slope of the tangent to our original point.

As an example, the slope of the tangent to

$$
3 x^{3}-4 x+1
$$

at $x=3$, requires us to shift the graph by 3 to the left. This is done by substituting $x+3$ to x everywhere:
$3(x+3)^{3}-4(x+3)+1=3 x^{3}+9 x^{2}+27 x+81-4 x-12+1=3 x^{3}+9 x^{2}+23 x+69$
and the slope of the tangent will be 23 .

2 Reciprocals of Polynomials

To get the same information on Rational Functions, let's start with the reciprocal of a polynomial, say

$$
\frac{1}{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}}
$$

If $|x|$ is very small, it is reasonable to think that we may neglect everything but the lowest terms:

$$
\approx \frac{1}{a_{1} x+a_{0}}
$$

Now, if this has to have a tangent, it should very much like a linear function but what linear function?

2.1 The Mathematical Argument

If $\frac{1}{a_{1} x+a_{0}}$ was a (linear) Polynomial, which it surely isn't, it would be a function $p(x)=u x+v$, such that $p(x)\left(a_{1} x+a_{0}\right)=1$. Well, there is no such function, but then we are systematically treating higher powers as if they didn't exist, so that, for example, $1+c x^{2}$ on the right hand side would be just as good. Now, that's easy to arrange (thanks, special products!). In fact we can observe that

$$
a_{1} x+a_{0}=a_{0}\left(1+\frac{a_{1}}{a_{0}} x\right)
$$

and

$$
a_{0}\left(1+\frac{a_{1}}{a_{0}} x\right) \cdot \frac{1}{a_{0}}\left(1-\frac{a_{1}}{a_{0}} x\right)=1-\frac{a_{1}^{2}}{a_{0}^{2}} x^{2}
$$

which fits our bill! Hence, we should be able to say that

$$
\frac{1}{a_{1} x+a_{0}} \approx \frac{1}{a_{0}}\left(1-\frac{a_{1}}{a_{0}} x\right)=\frac{1}{a_{0}}-\frac{a_{1}}{a_{0}^{2}} x
$$

2.2 The Sale Discount Argument

This is a delightful argument, due to an insightful instructor at Shoreline CC. Rather than a formal proof, it shows that you may have known about the approximation above all along...

In a nutshell, the argument goes like this: suppose you buy an item on sale, offered with a discount of r. If you paid p, what was the original price?

The correct argument is: let's call the original price x. Then $p=x \cdot(1-r)$, or

$$
x=\frac{p}{1-r}
$$

The wrong argument that is very commonly argued, is that the original price was $p(1+r)$. This is incorrect, since $1+r \neq \frac{1}{1-r}$. However, it is not horrendously wrong: it is just a little off (at least, if the discount was not too high). With a little patience, you will realize that it is wrong, because if $p(1+r)$ was the original price, the discounted price would be

$$
p(1+r)(1-r)=p\left(1-r^{2}\right) \neq p
$$

While we could add a correction to our mistaken estimate to improve the result, here we can be satisfied observing that the mistake consisted in neglecting $r^{2} p$. If this is a sufficiently small number, we may get away with our carelessness...

3 Rational Functions

Now, we can proceed full blast, starting with the slope at the y axis. We look at the lowest terms in both numerator and denominator, and apply the arguments above. Here is a simple example:

$$
\begin{gathered}
\frac{4 x^{3}-3 x^{2}+2 x+1}{3 x^{2}-2 x-2} \approx \frac{2 x+1}{-2 x-2}=-(2 x+1) \frac{1}{2 x+2} \approx-(2 x+1)\left(\frac{1}{2}-\frac{2}{4} x\right)= \\
=-\frac{1}{2}(2 x+1)(1-x)=-\frac{1}{2}\left(2 x-2 x^{2}+1-x\right)= \\
=x^{2}-\frac{x}{2}-\frac{1}{2} \approx-\frac{1}{2}-\frac{x}{2}
\end{gathered}
$$

which tells us that this rational function has a y-intercept of $-\frac{1}{2}$ (which we could see directly, of course: just set $x=0$ in the original function), and that the slope of its tangent at $x=0$ is $-\frac{1}{2}$.

Of course, to get the slope of the tangent at any other point, we will have to shift the function again, just as we did before. The calculations are a bit long, but very simple.

