
How To Learn Everything About Any

Polynomial

Cal
ulus without 
al
ulus

1 Introdu
tion

When you are given a fun
tion, probably as an expression, it is often desirable

to be able to tell how its graph behaves, without a
tually graphing it. For

example, a frequent question may be to �nd if and when the graph displays a

�maximum� (it goes from in
reasing to de
reasing) or a �minimum� (the 
on-

verse). It may also be useful to know if, near a spe
i�
 value of the input, the

graph is in
reasing, de
reasing or neither.

Cal
ulus allows you to answer these and similar questions for very general

fun
tions. However, there is a 
lass of fun
tions that doesn't need sophisti
ated

tools for this purpose: the polynomials (a
tually, this applies for the most part

to rational fun
tions too). As a matter of fa
t, if you go ba
k to this paper on
e

you have learned about the powerful tools that 
al
ulus provides, you might

noti
e that the method we are going to dis
uss here leads to the very same

equations that the general theory suggests.

Now, don't take this statements in the wrong way: what we are doing here

is a
tually a te
hnique deeply 
onne
ted with 
al
ulus. However, it is an �ele-

mentary� te
hnique, as it relies on a simple observation (whi
h is presented in

an intuitive way), and straightforward algebra.

2 Basi
 Fa
t

The following fa
t is the 
ru
ial starting point: for any number x < 1, x >

x2 > x3 > x4 > · · ·. This is easy to 
he
k: after all, any number multiplied

by another number that is less than one, de
reases. And the higher the power,

the more you are de
reasing your resulting produ
t. To get an idea of what

this entails, let's write a simple table, 
omparing the value of x + 5x2
with the

value of x, as x gets 
loser and 
loser to zero (the right hand 
olumn displays

the relative error in approximating x+ 5x2
with x):
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x x+ 5x2
(
x+ 5x2

)
− x = 5x2 (x+5x

2)−x

x
= 5x

2

x
= 5x

1 6 5 5

.1 .15 0.05 .5

.01 .0105 5 · 10−4
.05

.001 .001005 5 · 10−6
.005

.0001 .00010005 5 · 10−8
.0005

.00001 .0000100005 5 · 10−10
.00005

.000001 .000001000005 5 · 10−12
.000005

The point to note here is that if we de
ide to approximate x + 5x2
with x,

we will making a 
olossal error if x = 1 (we will be o� by 500%), but, as x

de
reases, not only does the di�eren
e between the two de
rease, it's also the

relative size of the error in the approximation that dwindles down to almost

nothing. This allows us to ignore higher powers when 
al
ulating with small

enough values of x, without mu
h of a sa
ri�
e in a

ura
y.

3 Studying A Polynomial For Values Of x Close

To Zero

Consider a polynomial of any degree. To �x ideas, we'll take a 
ouple of 
on
rete

examples, but the same argument applies to any other. We'll look at

f (x) = x10 − 2x4 + 3x2 − 2x+ 1 (1)

and at

g (x) = x10 − 2x4 + 3x2 + 1 (2)

3.1 The Case of (1)

Suppose we are wondering what the graph looks like for values of x 
lose to 0.
Sin
e x is assumed to be very small, we know that, for instan
e, 3x2−2x ≈ −2x,
following the dis
ussion in se
tion 2. Even more so, we will have that ignoring

x10 − 2x4
will also 
ause an even more minimal error. Hen
e, we 
an say that,

with a pra
ti
ally negligible error, if x is small enough, f (x) ≈ −2x+ 1. Now,
the right hand side represents a line going through (0, 1), with slope −2. The

intuitive argument we are making (whi
h 
an be made very rigorous, but we

don't need this now) implies that the graph of f (x) will be very 
lose to this

line as long as x does not deviate too mu
h from 0. Hen
e, the graph will be

de
reasing, sin
e so does this line (in
identally, this line is 
alled the tangent

line to the graph, at x = 0).
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3.2 The Case Of (2)

In this 
ase, the lowest power of x is a square. Now, as before, we 
an still

say that the fun
tion g (x) will not be severely a�e
ted if we de
ide to ignore

the higher terms. Note that ignoring the x2
term would get us to a horizontal

line y = 1. We will see in a minute that this is interesting: this line happens

to be the tangent line to g at x = 0. Still, it makes sense to keep the lowest

non 
onstant term, ignoring x10 − 2x4
, and approximate g (x) ≈ 3x2 + 1. Now,

3x2 + 1 is a parabola, and you will noti
e that its vertex is pre
isely at (0, 1).
Hen
e the line y = 1 is indeed tangent to the parabola - and we 
an argue

persuasively that it will be the tangent to g as well.

You 
an see how the red line (the graph of g) is hard to separate form the

blue line (the graph of 3x2 + 1) when x is 
lose to zero, and that the line y = 1
is tangent to both. Even without looking at the graph, sin
e 3x2 + 1 has a

minimum at x = 0 , it is reasonable to 
on
lude that the same applies to g(x).
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3.3 Going Further

You 
an push the study further. As an example, 
onsider again f (x) (example

(1)). If we de
ided that ignoring 3x2
was too rough, we 
ould try a better

approximation for f , when x is small (but not ne
essarily minus
ule): keep the

square term, and drop the other two. This would lead us to 
onsider

f (x) ≈ 3x2 − 2x+ 1

Now, the right hand side is a parabola, and, just like f , it will go through

(0, 1) de
reasing. Moreover, sin
e it is a parabola, and it is �open up� (that is,

it in
reases without bound when x gets farther from zero in both dire
tions),

it will display something like an outward �bulge� (see the pi
ture). Well, the

graph of f will display a similar �bulge� (this is 
alled �
on
avity�), and we 
an

re
ognize this fa
t without looking at the graph, by this argument.

4 What If We Want To Work With x 6= 0?

The dis
ussion above is simply a 
uriosity: sure, x = 0 might be a signi�
ant

value in an appli
ation, but, hey, we work with the whole fun
tion, not just

for small values of its input! Well, it turns out that it is easy to redu
e the

inspe
tion of a fun
tion near any value of x to the previous 
ase!

One tri
k we 
an use is to shift the graph of the fun
tion horizontally. That

is, to study a di�erent fun
tion, whose graph has exa
tly the same shape, and

whi
h has x = 0 
orrespond to the value of x we are interested in, in the original

fun
tion. To make this less 
onfusing, we will look how the graph of f (refer

again to equation (1)) looks near x = 1

2
. If you 
he
k the �gure, it is not


ompletely obvious from the pi
ture, so this exer
ise will tell us something more

than looking at a graphing 
al
ulator.

If we 
onsider a fun
tion with the same shape as f , but shifted to the left

by 0.5, you will noti
e how the new fun
tion, let's 
all it f̂ , looks near x = 0
exa
tly like f does near x = 1

2
:
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Hen
e, what we �nd about this fun
tion near x = 0 applies to f near x = 1

2
!

What is the equation of this fun
tion? You need to inspe
t the graph a bit, and

also apply the logi
 dis
ussed in the book about shifting graphs, to realize that

f̂ (x) will have the same value as f
(
x+ 1

2

)
. In other words,

f̂ (x) = (x+ 0.5)
10

− 2 (x+ 0.5)
4
+ 3 (x+ 0.5)

2
− 2 (x+ 0.5) + 1

To apply our tri
k, we need to look at just the terms involving 
onstants and x,

ignoring higher powers. This makes the 
al
ulations simpler than they look at

�rst sight, sin
e we only need to look at the terms in x, without worrying about

the higher powers. Thus, for instan
e, sin
e

(x+ 0.5)
4
= (x+ 0.5) (x+ 0.5) (x+ 0.5) (x+ 0.5)

we may noti
e that the 
onstant term will be 0.54 = 1

16
, and that the term in x

will be given by

4 · x ·
1

23
=

x

2

The same 
onsideration applies, with a bit more work, to the 10th power term,

and we 
on
lude that

f̂ (x) ≈
1

210
+10x

1

29
+
x

2
+

1

16
−2x−1+1 =

(
10 + 28 − 29

29

)
x+

1

16
+

1

210
= −

246

512
x+

65

1024
=

= −
123

256
x+

65

1024

whi
h is a line with slope − 123

256
≈ −0.48, going through the point

(
0, 65

1024

)
.

We 
on
lude that f (0.5) = 65

1024
(whi
h we 
ould �nd dire
tly, of 
ourse), and,

more interestingly, that the slope of its tangent line at x = 0.5 is approximately

−0.48.

Note If you prefer, instead of thinking in terms of shifted graphs, we 
an look

at the behavior of f near x = 0.5, by rewriting its expression as a fun
tion

of x− 0.5 = h: f(0.5 + h). Expanding the parentheses leads to the same

expressions above, written with h in pla
e of x.
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4.1 Things may get more 
ompli
ated - but not too mu
h

What if the 
oe�
ient of x had turned out to be zero? Well, then we would have

had to look one step further: if the 
oe�
ient of x2
was not zero, then the point

would have looked like a maximum or minimum, depending on its sign, sin
e the

fun
tion would be behaving like a parabola at its vertex. If even that had turned

out to be zero, we would have had to move on to 3rd (and, if ne
essary, even

higher) powers: the behavior of our fun
tion would have been similar to that of

the 
orresponding polynomial. As an example, 
onsider h (x) = x4 − 4x3 + 4x2

near x = 2. If we shift the 
urve by 2 to the left, we get to study (ignoring all

powers greater than 1)

ĥ (x) = (x+ 2)4−4 (x+ 2)3+4 (x+ 2)2 ≈ 4x·23+24−4
(
3x · 22 + 23

)
+4 (4x+ 4) =

= 32x+ 16− 48x− 32 + 16x+ 16 = 0 · x+ 0

This means that the fun
tion has the value 0 at x = 2 (as we 
an 
he
k imme-

diately), and also, that to get more details, we better keep the x2
terms in our

approximation. If we do this, we get (note that we already know that the terms

in x , and the 
onstant are zero, so we just forget about them)

ĥ (x) = (x+ 2)
4
− 4 (x+ 2)

3
+ 4 (x+ 2)

2
≈ 6x2 · 22 − 4

(
3x2 · 2

)
+ 4x2 =

= 24x2 − 24x2 + 4x2 = 4x2

We 
on
lude that the graph of ĥ (x) near x = 0, and hen
e the graph of h (x)
near x = 2, looks very mu
h like that of a parabola with leading 
oe�
ient 4.

Remark: We needed an example where the minimum was attained at a point

easy to express, hen
e the example was 
ooked up. In fa
t, an easy way

to write the fun
tion is (just fa
tor)

h (x) = x2 (x− 2)
2

Now it is easy to see that when x ≈ 0 the fun
tion will look very mu
h

like x2 · (0− 2)
2
= 4x2

, and when x ≈ 2, it will look very mu
h like

22 (x− 2)
2
= 4 (x− 2)

2
, whi
h is the red graph above.
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Note: An equivalent way to perform the 
al
ulations in this se
tion, to �nd

out about the graph of f near a point x = a, is to rewrite the fun
tion as

a fun
tion of x = a+h, and look at its behavior around h = 0. Try it out,

ans see that you get the same 
al
ulations (
hange x to h as needed).

5 Looking For Maxima And Minima

The dis
ussion above is interesting, but we might have more pressing questions.

The one we 
an try to address is, given a fun
tion (a polynomial, more pre
isely:

it's the only fun
tion type we 
an handle this way), how 
an we �nd its maxima

and minima, if they exist? The answer is easier than we might expe
t (even if

the a
tual 
al
ulations might turn out to be di�
ult to take to the end).

In fa
t, let us take, as an example, the fun
tion f in (1) - whi
h is quite a


ompli
ated 
ase indeed. We would like to �nd a value of x where the fun
tion

rea
hes its minimum or maximum (though, from the pi
ture, it's not too likely

that the latter exists) value. We 
an work this way: let us shift the graph

by a generi
 quantity - say a: we look at f̃ (x) = f (x+ a). We 
ompute the

expression for f̃ (x+ a), negle
ting, as usual, all terms but the lowest powers of

x, and try to pi
k an a su
h that the lowest surviving term is x2
:

f̃ (x) = f (x+ a) = (x+ a)10 − 2 (x+ a)4 − 3 (x+ a)2 − 2 (x+ a) + 1 ≈

≈ a10 + 10x · a9 − 2
(
a4 + 4x · a3

)
− 3

(
a2 + 2x · a

)
− 2x− 2a+ 1

The term in x is

10a9x− 8a3x− 6ax− 2x

and it will be zero if

10a9 − 8a3 − 6a− 2 = 0

Now this is quite a hard equation to solve, but, assuming we get hold of software

able to do it, it will tell us where the polynomial attains its minimum (this

requires also 
he
king that the term in x2
has positive 
oe�
ient). In
identally,

a software pa
kage I have suggests, as approximate values, x ≈ 0.791, and
y ≈ 0.607978. Also, in
identally, after a good 
hunk of your �rst Cal
ulus


ourse, applying the methods you will learn there, will lead to this very same

equation!
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