How To Learn Everything About Any
Polynomial

Calculus without calculus

1 Introduction

When you are given a function, probably as an expression, it is often desirable
to be able to tell how its graph behaves, without actually graphing it. For
example, a frequent question may be to find if and when the graph displays a
“maximum” (it goes from increasing to decreasing) or a “minimum” (the con-
verse). It may also be useful to know if, near a specific value of the input, the
graph is increasing, decreasing or neither.

Calculus allows you to answer these and similar questions for very general
functions. However, there is a class of functions that doesn’t need sophisticated
tools for this purpose: the polynomials (actually, this applies for the most part
to rational functions too). As a matter of fact, if you go back to this paper once
you have learned about the powerful tools that calculus provides, you might
notice that the method we are going to discuss here leads to the very same
equations that the general theory suggests.

Now, don’t take this statements in the wrong way: what we are doing here
is actually a technique deeply connected with calculus. However, it is an “ele-
mentary” technique, as it relies on a simple observation (which is presented in
an intuitive way), and straightforward algebra.

2 Basic Fact

The following fact is the crucial starting point: for any number z < 1, z >
2?2 > 2% > 2% > ..., This is easy to check: after all, any number multiplied
by another number that is less than one, decreases. And the higher the power,
the more you are decreasing your resulting product. To get an idea of what
this entails, let’s write a simple table, comparing the value of = 4 522 with the
value of z, as x gets closer and closer to zero (the right hand column displays
the relative error in approximating = + 522 with x):



(1}+51}2)—LE 5z

‘ x x + 52 ‘(x+5x2)—x:5x2‘ — =2 =5z
1 6 5 5
1 15 0.05 5
.01 .0105 5.10~% .05
.001 .001005 5-10°° .005
.0001 .00010005 5-1078 .0005
.00001 | .0000100005 5.10-10 .00005
.000001 | .000001000005 5-10 12 .000005

The point to note here is that if we decide to approximate = 4+ 522 with x,
we will making a colossal error if z = 1 (we will be off by 500%), but, as x
decreases, not only does the difference between the two decrease, it’s also the
relative size of the error in the approximation that dwindles down to almost
nothing. This allows us to ignore higher powers when calculating with small
enough values of x, without much of a sacrifice in accuracy.

3 Studying A Polynomial For Values Of x Close
To Zero

Counsider a polynomial of any degree. To fix ideas, we’ll take a couple of concrete
examples, but the same argument applies to any other. We’ll look at

flz) =2 —22* + 322 — 22 +1 (1)

and at
g(x) =20 —22% + 322 + 1 (2)

3.1 The Case of (1)

Suppose we are wondering what the graph looks like for values of = close to 0.
Since z is assumed to be very small, we know that, for instance, 322 —2z ~ —2z,
following the discussion in section 2. Even more so, we will have that ignoring
210 — 224 will also cause an even more minimal error. Hence, we can say that,
with a practically negligible error, if 2 is small enough, f () ~ —2z + 1. Now,
the right hand side represents a line going through (0, 1), with slope —2. The
intuitive argument we are making (which can be made very rigorous, but we
don’t need this now) implies that the graph of f (x) will be very close to this
line as long as x does not deviate too much from 0. Hence, the graph will be
decreasing, since so does this line (incidentally, this line is called the tangent
line to the graph, at z = 0).
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3.2 The Case Of (2)

In this case, the lowest power of z is a square. Now, as before, we can still
say that the function g (z) will not be severely affected if we decide to ignore
the higher terms. Note that ignoring the 22 term would get us to a horizontal
line y = 1. We will see in a minute that this is interesting: this line happens
to be the tangent line to g at x = 0. Still, it makes sense to keep the lowest
non constant term, ignoring z'° — 2z, and approximate g (z) ~ 322 + 1. Now,
3z2 4+ 1 is a parabola, and you will notice that its vertex is precisely at (0, 1).
Hence the line y = 1 is indeed tangent to the parabola - and we can argue
persuasively that it will be the tangent to g as well.
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You can see how the red line (the graph of g) is hard to separate form the
blue line (the graph of 322 + 1) when =z is close to zero, and that the line y = 1
is tangent to both. Even without looking at the graph, since 322 + 1 has a
minimum at z = 0, it is reasonable to conclude that the same applies to g(x).




3.3 Going Further

You can push the study further. As an example, consider again f () (example
(1)). If we decided that ignoring 3x? was too rough, we could try a better
approximation for f, when z is small (but not necessarily minuscule): keep the
square term, and drop the other two. This would lead us to consider

f(x) ~32% =22 +1

Now, the right hand side is a parabola, and, just like f, it will go through
(0,1) decreasing. Moreover, since it is a parabola, and it is “open up” (that is,
it increases without bound when z gets farther from zero in both directions),
it will display something like an outward “bulge” (see the picture). Well, the
graph of f will display a similar “bulge” (this is called “concavity”), and we can
recognize this fact without looking at the graph, by this argument.
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4 What If We Want To Work With x # 07

The discussion above is simply a curiosity: sure, x = 0 might be a significant
value in an application, but, hey, we work with the whole function, not just
for small values of its input! Well, it turns out that it is easy to reduce the
inspection of a function near any value of x to the previous case!

One trick we can use is to shift the graph of the function horizontally. That
is, to study a different function, whose graph has exactly the same shape, and
which has = 0 correspond to the value of z we are interested in, in the original
function. To make this less confusing, we will look how the graph of f (refer
again to equation (1)) looks near = 3. If you check the figure, it is not
completely obvious from the picture, so this exercise will tell us something more
than looking at a graphing calculator.

If we consider a function with the same shape as f, but shifted to the left
by 0.5, you will notice how the new function, let’s call it f, looks near x = 0

exactly like f does near x = %:
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Hence, what we find about this function near x = 0 applies to f near x = %!
What is the equation of this function? You need to inspect the graph a bit, and
also apply the logic discussed in the book about shifting graphs, to realize that
f (x) will have the same value as f (:10 + %) In other words,

F@)=@+05)"° =2 +05)*+3@+05)>—2(x+05)+1

To apply our trick, we need to look at just the terms involving constants and =z,
ignoring higher powers. This makes the calculations simpler than they look at
first sight, since we only need to look at the terms in x, without worrying about
the higher powers. Thus, for instance, since

(x4 0.5)" = (z 4+ 0.5) (x + 0.5) (x + 0.5) (x + 0.5)

we may notice that the constant term will be 0.5% = %, and that the term in x
will be given by
g L7
TTE T
The same consideration applies, with a bit more work, to the 10th power term,
and we conclude that

~ 1 1z 1 10 +28 — 29 11 246
~— 410zt ——2—14+1 = | ———— — =g =
(@)~ g +l0rgg+ 5t qg—2o-1+ ( 29 )x+16+210 512" 1024
_ s 6
2560 1024
which is a line with slope —éﬁ ~ —0.48, going through the point (O, %).

We conclude that f(0.5) = 1557 (which we could find directly, of course), and,

more interestingly, that the slope of its tangent line at x = 0.5 is approximately
—0.48.

Note If you prefer, instead of thinking in terms of shifted graphs, we can look
at the behavior of f near = 0.5, by rewriting its expression as a function
of  — 0.5 = h: f(0.5+ h). Expanding the parentheses leads to the same
expressions above, written with A in place of x.
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4.1 Things may get more complicated - but not too much

What if the coefficient of « had turned out to be zero? Well, then we would have
had to look one step further: if the coefficient of 22 was not zero, then the point
would have looked like a maximum or minimum, depending on its sign, since the
function would be behaving like a parabola at its vertex. If even that had turned
out to be zero, we would have had to move on to 3rd (and, if necessary, even
higher) powers: the behavior of our function would have been similar to that of
the corresponding polynomial. As an example, consider h (z) = z* — 42° + 422
near x = 2. If we shift the curve by 2 to the left, we get to study (ignoring all
powers greater than 1)

h(z) = (x+2)" 4 (z +2)°+4 (z + 2)° ~ 4223424 (32 - 2% + 2°) +4 (4z + 4)

=322z 4+16-48x - 32+ 16x+16=0-2+0

This means that the function has the value 0 at = 2 (as we can check imme-
diately), and also, that to get more details, we better keep the z? terms in our
approximation. If we do this, we get (note that we already know that the terms
in z , and the constant are zero, so we just forget about them)

~

hz)=(2+2)" —4(@+2)" +4(x+2)" ~ 6% 2> =4 (32” - 2) + 4a” =

= 24a% — 2422 + 42° = 422

We conclude that the graph of h (x) near = 0, and hence the graph of h (z)
near x = 2, looks very much like that of a parabola with leading coefficient 4.
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Remark: We needed an example where the minimum was attained at a point
easy to express, hence the example was cooked up. In fact, an easy way
to write the function is (just factor)

h(z) =2? (z —2)°

Now it is easy to see that when x ~ 0 the function will look very much
like 22 - (0 —2)® = 422, and when z ~ 2, it will look very much like
22 (2 —2)% = 4 (x — 2)?, which is the red graph above.



Note: An equivalent way to perform the calculations in this section, to find
out about the graph of f near a point x = a, is to rewrite the function as
a function of z = a+ h, and look at its behavior around & = 0. Try it out,
ans see that you get the same calculations (change  to h as needed).

5 Looking For Maxima And Minima

The discussion above is interesting, but we might have more pressing questions.
The one we can try to address is, given a function (a polynomial, more precisely:
it’s the only function type we can handle this way), how can we find its maxima
and minima, if they exist? The answer is easier than we might expect (even if
the actual calculations might turn out to be difficult to take to the end).

In fact, let us take, as an example, the function f in (1) - which is quite a
complicated case indeed. We would like to find a value of = where the function
reaches its minimum or maximum (though, from the picture, it’s not too likely
that the latter exists) value. We can work this way: let us shift the graph
by a generic quantity - say a: we look at f~(:1:) = f(xz+a). We compute the
expression for ]7(:10 + a), neglecting, as usual, all terms but the lowest powers of

x, and try to pick an a such that the lowest surviving term is z2:

f@=fle+a)=@E+a)’-2@+a)*-3@+a)’-2@+a)+1~

%a10+10$'a9—2(a4—|—4x~a3)—3(a2+23:~a)—2:1:—2a+1

The term in z is
10a°z — 8a®x — 6ax — 2x

and it will be zero if
10a® — 8a® —6a —2 =0

Now this is quite a hard equation to solve, but, assuming we get hold of software
able to do it, it will tell us where the polynomial attains its minimum (this
requires also checking that the term in z?has positive coefficient). Incidentally,
a software package I have suggests, as approximate values, x ~ 0.791, and
y ~ 0.607978. Also, incidentally, after a good chunk of your first Calculus
course, applying the methods you will learn there, will lead to this very same
equation!



