
How To Learn Everything About Any

Polynomial

Calulus without alulus

1 Introdution

When you are given a funtion, probably as an expression, it is often desirable

to be able to tell how its graph behaves, without atually graphing it. For

example, a frequent question may be to �nd if and when the graph displays a

�maximum� (it goes from inreasing to dereasing) or a �minimum� (the on-

verse). It may also be useful to know if, near a spei� value of the input, the

graph is inreasing, dereasing or neither.

Calulus allows you to answer these and similar questions for very general

funtions. However, there is a lass of funtions that doesn't need sophistiated

tools for this purpose: the polynomials (atually, this applies for the most part

to rational funtions too). As a matter of fat, if you go bak to this paper one

you have learned about the powerful tools that alulus provides, you might

notie that the method we are going to disuss here leads to the very same

equations that the general theory suggests.

Now, don't take this statements in the wrong way: what we are doing here

is atually a tehnique deeply onneted with alulus. However, it is an �ele-

mentary� tehnique, as it relies on a simple observation (whih is presented in

an intuitive way), and straightforward algebra.

2 Basi Fat

The following fat is the ruial starting point: for any number x < 1, x >

x2 > x3 > x4 > · · ·. This is easy to hek: after all, any number multiplied

by another number that is less than one, dereases. And the higher the power,

the more you are dereasing your resulting produt. To get an idea of what

this entails, let's write a simple table, omparing the value of x + 5x2
with the

value of x, as x gets loser and loser to zero (the right hand olumn displays

the relative error in approximating x+ 5x2
with x):
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x x+ 5x2
(
x+ 5x2

)
− x = 5x2 (x+5x

2)−x

x
= 5x

2

x
= 5x

1 6 5 5

.1 .15 0.05 .5

.01 .0105 5 · 10−4
.05

.001 .001005 5 · 10−6
.005

.0001 .00010005 5 · 10−8
.0005

.00001 .0000100005 5 · 10−10
.00005

.000001 .000001000005 5 · 10−12
.000005

The point to note here is that if we deide to approximate x + 5x2
with x,

we will making a olossal error if x = 1 (we will be o� by 500%), but, as x

dereases, not only does the di�erene between the two derease, it's also the

relative size of the error in the approximation that dwindles down to almost

nothing. This allows us to ignore higher powers when alulating with small

enough values of x, without muh of a sari�e in auray.

3 Studying A Polynomial For Values Of x Close

To Zero

Consider a polynomial of any degree. To �x ideas, we'll take a ouple of onrete

examples, but the same argument applies to any other. We'll look at

f (x) = x10 − 2x4 + 3x2 − 2x+ 1 (1)

and at

g (x) = x10 − 2x4 + 3x2 + 1 (2)

3.1 The Case of (1)

Suppose we are wondering what the graph looks like for values of x lose to 0.
Sine x is assumed to be very small, we know that, for instane, 3x2−2x ≈ −2x,
following the disussion in setion 2. Even more so, we will have that ignoring

x10 − 2x4
will also ause an even more minimal error. Hene, we an say that,

with a pratially negligible error, if x is small enough, f (x) ≈ −2x+ 1. Now,
the right hand side represents a line going through (0, 1), with slope −2. The

intuitive argument we are making (whih an be made very rigorous, but we

don't need this now) implies that the graph of f (x) will be very lose to this

line as long as x does not deviate too muh from 0. Hene, the graph will be

dereasing, sine so does this line (inidentally, this line is alled the tangent

line to the graph, at x = 0).
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3.2 The Case Of (2)

In this ase, the lowest power of x is a square. Now, as before, we an still

say that the funtion g (x) will not be severely a�eted if we deide to ignore

the higher terms. Note that ignoring the x2
term would get us to a horizontal

line y = 1. We will see in a minute that this is interesting: this line happens

to be the tangent line to g at x = 0. Still, it makes sense to keep the lowest

non onstant term, ignoring x10 − 2x4
, and approximate g (x) ≈ 3x2 + 1. Now,

3x2 + 1 is a parabola, and you will notie that its vertex is preisely at (0, 1).
Hene the line y = 1 is indeed tangent to the parabola - and we an argue

persuasively that it will be the tangent to g as well.

You an see how the red line (the graph of g) is hard to separate form the

blue line (the graph of 3x2 + 1) when x is lose to zero, and that the line y = 1
is tangent to both. Even without looking at the graph, sine 3x2 + 1 has a

minimum at x = 0 , it is reasonable to onlude that the same applies to g(x).
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3.3 Going Further

You an push the study further. As an example, onsider again f (x) (example

(1)). If we deided that ignoring 3x2
was too rough, we ould try a better

approximation for f , when x is small (but not neessarily minusule): keep the

square term, and drop the other two. This would lead us to onsider

f (x) ≈ 3x2 − 2x+ 1

Now, the right hand side is a parabola, and, just like f , it will go through

(0, 1) dereasing. Moreover, sine it is a parabola, and it is �open up� (that is,

it inreases without bound when x gets farther from zero in both diretions),

it will display something like an outward �bulge� (see the piture). Well, the

graph of f will display a similar �bulge� (this is alled �onavity�), and we an

reognize this fat without looking at the graph, by this argument.

4 What If We Want To Work With x 6= 0?

The disussion above is simply a uriosity: sure, x = 0 might be a signi�ant

value in an appliation, but, hey, we work with the whole funtion, not just

for small values of its input! Well, it turns out that it is easy to redue the

inspetion of a funtion near any value of x to the previous ase!

One trik we an use is to shift the graph of the funtion horizontally. That

is, to study a di�erent funtion, whose graph has exatly the same shape, and

whih has x = 0 orrespond to the value of x we are interested in, in the original

funtion. To make this less onfusing, we will look how the graph of f (refer

again to equation (1)) looks near x = 1

2
. If you hek the �gure, it is not

ompletely obvious from the piture, so this exerise will tell us something more

than looking at a graphing alulator.

If we onsider a funtion with the same shape as f , but shifted to the left

by 0.5, you will notie how the new funtion, let's all it f̂ , looks near x = 0
exatly like f does near x = 1

2
:
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Hene, what we �nd about this funtion near x = 0 applies to f near x = 1

2
!

What is the equation of this funtion? You need to inspet the graph a bit, and

also apply the logi disussed in the book about shifting graphs, to realize that

f̂ (x) will have the same value as f
(
x+ 1

2

)
. In other words,

f̂ (x) = (x+ 0.5)
10

− 2 (x+ 0.5)
4
+ 3 (x+ 0.5)

2
− 2 (x+ 0.5) + 1

To apply our trik, we need to look at just the terms involving onstants and x,

ignoring higher powers. This makes the alulations simpler than they look at

�rst sight, sine we only need to look at the terms in x, without worrying about

the higher powers. Thus, for instane, sine

(x+ 0.5)
4
= (x+ 0.5) (x+ 0.5) (x+ 0.5) (x+ 0.5)

we may notie that the onstant term will be 0.54 = 1

16
, and that the term in x

will be given by

4 · x ·
1

23
=

x

2

The same onsideration applies, with a bit more work, to the 10th power term,

and we onlude that

f̂ (x) ≈
1

210
+10x

1

29
+
x

2
+

1

16
−2x−1+1 =

(
10 + 28 − 29

29

)
x+

1

16
+

1

210
= −

246

512
x+

65

1024
=

= −
123

256
x+

65

1024

whih is a line with slope − 123

256
≈ −0.48, going through the point

(
0, 65

1024

)
.

We onlude that f (0.5) = 65

1024
(whih we ould �nd diretly, of ourse), and,

more interestingly, that the slope of its tangent line at x = 0.5 is approximately

−0.48.

Note If you prefer, instead of thinking in terms of shifted graphs, we an look

at the behavior of f near x = 0.5, by rewriting its expression as a funtion

of x− 0.5 = h: f(0.5 + h). Expanding the parentheses leads to the same

expressions above, written with h in plae of x.
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4.1 Things may get more ompliated - but not too muh

What if the oe�ient of x had turned out to be zero? Well, then we would have

had to look one step further: if the oe�ient of x2
was not zero, then the point

would have looked like a maximum or minimum, depending on its sign, sine the

funtion would be behaving like a parabola at its vertex. If even that had turned

out to be zero, we would have had to move on to 3rd (and, if neessary, even

higher) powers: the behavior of our funtion would have been similar to that of

the orresponding polynomial. As an example, onsider h (x) = x4 − 4x3 + 4x2

near x = 2. If we shift the urve by 2 to the left, we get to study (ignoring all

powers greater than 1)

ĥ (x) = (x+ 2)4−4 (x+ 2)3+4 (x+ 2)2 ≈ 4x·23+24−4
(
3x · 22 + 23

)
+4 (4x+ 4) =

= 32x+ 16− 48x− 32 + 16x+ 16 = 0 · x+ 0

This means that the funtion has the value 0 at x = 2 (as we an hek imme-

diately), and also, that to get more details, we better keep the x2
terms in our

approximation. If we do this, we get (note that we already know that the terms

in x , and the onstant are zero, so we just forget about them)

ĥ (x) = (x+ 2)
4
− 4 (x+ 2)

3
+ 4 (x+ 2)

2
≈ 6x2 · 22 − 4

(
3x2 · 2

)
+ 4x2 =

= 24x2 − 24x2 + 4x2 = 4x2

We onlude that the graph of ĥ (x) near x = 0, and hene the graph of h (x)
near x = 2, looks very muh like that of a parabola with leading oe�ient 4.

Remark: We needed an example where the minimum was attained at a point

easy to express, hene the example was ooked up. In fat, an easy way

to write the funtion is (just fator)

h (x) = x2 (x− 2)
2

Now it is easy to see that when x ≈ 0 the funtion will look very muh

like x2 · (0− 2)
2
= 4x2

, and when x ≈ 2, it will look very muh like

22 (x− 2)
2
= 4 (x− 2)

2
, whih is the red graph above.
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Note: An equivalent way to perform the alulations in this setion, to �nd

out about the graph of f near a point x = a, is to rewrite the funtion as

a funtion of x = a+h, and look at its behavior around h = 0. Try it out,

ans see that you get the same alulations (hange x to h as needed).

5 Looking For Maxima And Minima

The disussion above is interesting, but we might have more pressing questions.

The one we an try to address is, given a funtion (a polynomial, more preisely:

it's the only funtion type we an handle this way), how an we �nd its maxima

and minima, if they exist? The answer is easier than we might expet (even if

the atual alulations might turn out to be di�ult to take to the end).

In fat, let us take, as an example, the funtion f in (1) - whih is quite a

ompliated ase indeed. We would like to �nd a value of x where the funtion

reahes its minimum or maximum (though, from the piture, it's not too likely

that the latter exists) value. We an work this way: let us shift the graph

by a generi quantity - say a: we look at f̃ (x) = f (x+ a). We ompute the

expression for f̃ (x+ a), negleting, as usual, all terms but the lowest powers of

x, and try to pik an a suh that the lowest surviving term is x2
:

f̃ (x) = f (x+ a) = (x+ a)10 − 2 (x+ a)4 − 3 (x+ a)2 − 2 (x+ a) + 1 ≈

≈ a10 + 10x · a9 − 2
(
a4 + 4x · a3

)
− 3

(
a2 + 2x · a

)
− 2x− 2a+ 1

The term in x is

10a9x− 8a3x− 6ax− 2x

and it will be zero if

10a9 − 8a3 − 6a− 2 = 0

Now this is quite a hard equation to solve, but, assuming we get hold of software

able to do it, it will tell us where the polynomial attains its minimum (this

requires also heking that the term in x2
has positive oe�ient). Inidentally,

a software pakage I have suggests, as approximate values, x ≈ 0.791, and
y ≈ 0.607978. Also, inidentally, after a good hunk of your �rst Calulus

ourse, applying the methods you will learn there, will lead to this very same

equation!
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