Simple Curves in Polar Coordinates

- Circle of radius R, centered at the origin: $\rho=R$
- Half-line through the origin: $\theta=u$
- General line: We can argue geometrically or algebraically.
- Algebraically: take a line $y=m x+b$. Substituting,

$$
\rho \sin \theta=m \rho \cos \theta+b \text { or } \rho(\sin \theta-m \cos \theta)=b
$$

Since $m=\tan \alpha$ is the slope, this becomes

$$
\begin{gathered}
\rho\left(\sin \theta-\frac{\sin \alpha \cos \theta}{\cos \alpha}\right)=b \\
\rho(\cos \alpha \sin \theta-\sin \alpha \cos \theta)=b \cos \alpha \\
\rho \sin (\theta-\alpha)=b \cos \alpha
\end{gathered}
$$

- We can reach the same conclusion geometrically:

- General circle: we can argue geometrically or algebraically.
- Geometrical construction: if the center is at (r, α), we can argue as follows. Consider the triangle $O C P$. The side $C P$, length R, is opposite the angle at the vertex O, whose size is $\theta-\alpha$.

By the Law of Cosines,

$$
\begin{aligned}
& R^{2}=\rho^{2}+r^{2}-2 r \rho \cos (\theta-\alpha) \\
& \rho^{2}-2 r \rho \cos (\theta-\alpha)=R^{2}-r^{2}
\end{aligned}
$$

This is an implicit equation for our circle. An example in the book has $r=R=2$ and $\alpha=\frac{\pi}{2}$. Our equation now becomes $\left(\cos \left(\theta-\frac{\pi}{2}\right)=\sin \theta\right.$)

$$
\rho^{2}=2 R \rho \sin \theta \text { or } \rho=2 R \sin \theta=4 \sin \theta
$$

- Algebraic construction: the circle is the set of points (x, y) at distance R from the center (a, b). Hence it can be represented by the equation

Substituting polar coordinates, we get

$$
\begin{gathered}
(\rho \cos \theta-r \cos \alpha)^{2}+(\rho \sin \theta-r \sin \alpha)^{2}= \\
=\rho^{2} \cos ^{2} \theta+\rho^{2} \sin ^{2} \theta+r^{2} \cos ^{2} \alpha+r^{2} \sin ^{2} \alpha-2 r \rho \cos \theta \cos \alpha-2 r \rho \sin \theta \sin \alpha= \\
=\rho^{2}+r^{2}-2 r \rho \cos (\theta-\alpha)=R^{2}
\end{gathered}
$$

which is the equation we found before.

