
Graphing Polynomial FuntionsCalulus without alulus1 IntrodutionYou may want to hek out the PDF �le �Average Rate of Change for QuadratiFuntions�, where we disussed how the average rate of hange of a Polynomialfuntion of degree n turns out to be a polynomial itself, of degree n−1. What'smore, even if demonstrated only on a quadrati funtion, we saw that, when weompute the average rate of hange over short intervals, the result di�ers verylittle from the slope of the tangent line to the urve.All this sets us up to takle one big part of the problem of desribing poly-nomials in more detail: it allows us to �nd where these funtions are inreasing,where they are dereasing, and where they have turning points. Sine one of thetools is the solving of algebrai equations, the results are not as all-solving as wewould like: to study, say, a 6th degree polynomial, we would need to solve 6thand 5th degree equations, whih is a formidable task, if we need thee solutionsto be expliit and exat. Still, it makes polynomials the easiest �ompliated�funtions to study, and it also provides a blueprint for the study of even moreompliated funtions, as developed in Calulus.2 Finding ZerosIf you have a polynomial you want to study, you ould start with the loationof its zeros - preferably alled the �roots� of the polynomial. Unfortunately,this is usually impossible to do in exat form: we only have general solutionformulas for equations of degree up to four (and those for degree 3 and 4 are veryumbersome). Given the ease with whih we an ompute with polynomials,there are very good approximation methods to �nd those roots (they are usuallyoded in mathematial software for quik use).One problem where these methods are not neessarily adequate is in deidingwhether two roots are extremely lose or they oinide. Numerial methodshave a hard time distinguishing 0 from very small numbers. Of ourse, inmost pratial appliations, this is not a big problem, but it an be in speialirumstanes.It is often not very hard to ome up with a ballpark �gure for the roots, andthe book lists several tools for that. One ruial property polynomials have is1



to have a �ontinuous� graph. The intuitive meaning of this is that the graphdoes not exhibit jumps or gaps. What this, again intuitively, entails is that if apolynomial is positive at, say, x = x1, and negative at x = x2 > x1, it will haveto have at least a root between these two points1.3 Points of Inrease and Points of DereaseIf you look at the graph of a polynomial, as presented in a book or by a softwarepakage, you will notie that it has a simple pattern: �oming from� very nega-tive values of the independent variable, it will be either inreasing or dereasing;the rate at whih it is doing so will slow down as you move on; this may go onforever, with the rate possibly going up and down; in most ases, though, atsome point the graph will be pratially horizontal, after whih it may startto inrease (or derease) again, at an aelerating pae, or, more ommonly, itmay swith diretion; this sequene may repeat a number of times, until thegraph begins to inrease, or derease, at an aelerating pae for the rest of itsdomain.Muh of this behavior an be aptured diretly from the formula expressingthe polynomial (after all, that's what the software is doing anyway), and we anstart looking for the tools to do so.To �x ideas, let us keep as a guinea pig a polynomial with no speial apparentsimplifying features, like
p (x) = x

7 − 3x
6 + 5x

4 − 2x
3 − x

2 + 5x + 43.1 Tail (�End�) BehaviorAs disussed in the book, when |x| is very large, the behavior of a polynomialis almost indistinguishable from that of the power funtion equal to its highestdegree term. Sine this behavior is easy to desribe, we have an immediate wayof seeing what is going on at the two ends of the graph. In the ase of our guineapig, this term is x7, a high odd power, with a positive oe�ient. The graph issomewhat similar to the ubi funtion x3, with muh steeper growth:1Sine in Math we want to extend our sope to muh more ompliated funtions, boththe notion of being �ontinuous�, and the fat that suh a funtion needs to take the valuezero between two points where it has opposing signs, need to be ast in a muh more abstratand preise form. You will deal with this more general approah in Calulus - but the pointis that the rigorous treatment is there so that at least some of the easy things we an do withpolynomials an be extended to more ompliated ases.
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3.2 Crossing the y−axisThis is also an easy task. We look at the onstant term, and that's the
y−interept. Also, the linear term tells us about the slope with whih theaxis is rossed.In our example, the two lowest terms are 5x + 4, hene the graph will rossthe vertial axis at (0, 4), with a tangent whose slope is 5. That's pretty steep:

3.3 Inreasing or Dereasing? Turning Points?This is muh harder. By following the indiations of the �le �Average Rate ofChange for Quadrati Funtions�, we see that the slope of the tangent at a point
x will be given by the funtion

s (x) = 7x
6 − 18x

5 + 20x
3 − 6x

2 − 2x + 5whih is just as hard to study as our original. Of ourse, we know that for large
|x|, s (x) is positive, and so the graph of p (x) will be inreasing - but we alreadyknew that!One thing we an do is put in some values for x, and hek whether s ispositive or negative. This will point us towards areas where p is inreasing ordereasing. Now, sine we know that s (x) has at most six roots, there are atmost six points at whih it will hange sign - whih is where p will have a turningpoint. 3



Here is a little table, ourtesy of a helpful software pakage:
x s(x)

−1 6
1 6

1.5 -0.95312
1.8 -3.4367
2 9We see that there must be a zero between 1 and 1.5, and another between1.8 and 2. In fat, here is what a graphing utility will give us if we ask for apiture of s(x):

This suggests that p(x) will be almost always inreasing, exept for a shortinterval between 1 and 2, when it will be dereasing. It will have a �peak� (amaximum) at the beginning, and a �valley� (a minimum) at the end of thisinterval.Here is the graphing utility version of p(x):
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