
More On Exponentials And Logarithms

1 Transformations Of Exponentials

We studied some transformations that change a parabola into another. If you
recall, this had us change from a function f(x), to a transformed function
kf(bx+ c) + d.

When it comes to exponentials, it turns out that some of these transforma-
tions are actually one and the same. We ignore vertical shifts here, as they do
what they are expected to do, and look at the remaining ones.

Aabx+c means, taking e(x) = ax, and going to Ae(bx+ c). I.e., we are

1. Changing the horizontal scale (x → bx)

2. Shifting by −c (bx → bx+ c)

3. Multiplying by a constant, that is changing the vertical scale.

However, the operations can also be read differently.

1. Changing base: kx, if k = ab (and that’s OK for any k > 0),

kx =
(
ab
)x

= abx

(same as changing horizontal scale)

2. Change the vertical scale: e(x) → Ae(x), if A = ac (that’s always true,
for some c, as long as A > 0),

Aax = acax = ax+c

(same as shifting horizontally!)

2 Some Simple Comparisons

1. x > 0, a > b ⇒ ax > bx (let a = cb, with c > 1, so that ax = (bc)x =
bxcx, and cx > 1, if x > 0)

2. x < 0, a > b ⇒ ax < bx (it goes like before, but now, if x < 0, and
c > 1, cx < 1).

1



3 Graphs and Reflections 2

3 Graphs and Reflections

Note that, for any a, loga 1 = 0, just because, for any a, a0 = 1 (we recall that
we are only considering positive bases, a > 0 - also, given that 1x = 1 for any
x, we consider a 6= 1, as that is a trivial case).

Looking now at the graph of exponentials and logarithms, we have a few
observations. Since for a > 1, axgrows very fast, log

a
x grows very slow. Of

course, a lot also depends on the value of a. The following picture shows graphs
for ax, bx and loga x, logb x, with a, b > 1. Precisely, in the graph on the following
page, a = 7.3891, and b = 1.3499.

The behavior is similar, essentially involving a reflection around an axis,
when a, b < 1: the graph on the following page is for a = 0.1534, b = 0.74082
(these are the reciprocals of the previous values)

In fact, take c < 1. Since c < 1, 1
c
= k > 1. Now, the graph of cx is the

graph of
(
k−1

)x
= k−x - that is the graph of kx, reflected around the y−axis (x
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goes into −x). Similarly, we can compare logc x with logk−1 x = logk x:

logb x =
loga x

loga b

by the “change of base” formula. But loga b = logb−1 b = −1 (since
(
b−1

)
−1

= b),
so that

logb x = − loga x

or, the graph of logb x is the graph of the opposite of loga x - that is a reflection
around the x− axis (y goes to −y).

As noted in the book, since exponentials and logarithms are functions inverse
of each other, their graphs are related: one is the reflection of the other across
the diagonal line y = x, which is also drawn in the pictures.

3.1 * When do the graphs of ux and log
u
(x) intersect?

Disclaimer: This is a totally unnecessary section. It is here because I got curious
about this question, found the answer, and thought I’d write it down, just
in case anybody was wondering too... It is more than optional: it’s only
for those with too much time on their hands, and an odd curiosity they’d
like to satisfy.

If you look at the first graph in sec. 3, you’ll notice that the graphs of ax, and
log

a
x do not intersect, while those of bx, and log

b
x do (in two points). It is

fairly clear that if you look at the graph of an exponential like ux, for u > 1,
it will get lower and lower, as you decrease u. Since the graph of logu x is the
mirror image around the line y = x, it will do exactly the opposite. So, there
will be a largest value u, such that they intersect. For values for which they do
intersect, those intersections, by symmetry, will be on the line y = x, and there
will be generally two of them, except for that largest value of u for which only
one intersection exists: at that value of u, the two graphs will only touch in one
point, which will lie on the line y = x. All of this could be proved rigorously, but
it is pretty clear to see it, if you just picture how those graphs change, as you
change u (you could also play around with a graphing calculator or graphing
program).

Can we compute exactly what this special value of u is? At first glance
it’s not that easy, but on second thought we can. While a full-fledged rigorous
calculation would need some calculus, we can make do with just one intuitive
notion that was presented in the companion file “Bases for Logarithms”. There,
we argued that an exponential function emx has a rate of change at a point
(h, k) proportional to its value at that point, memh = mk. For ux = ex·lnx

that is lnu · eh lnu. Now it is fairly intuitive that this “instantaneous” rate of
change is the slope of the tangent line to the curve at that point (if that’s not
so intuitive, think of the argument that produced the rate of change result in
the first place: we are thinking of the graph ex lnu as being almost the same as
a sequence of very short line segments, with that slope exactly). Now, using
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the argument that our special value of u will cause the graph of ux to touch the
graph of logu x at one point only, lying on the line y = x, we can see that this
special value of u corresponds to a graph ux that has y = x as a tangent. No
other u will produce this (think of the corresponding graphs - look at the first
picture in sec. 3 for help).

Let’s write the equation of the tangent line to ux at a point
(
h, uh

)
on the

graph. By the previous discussion it is a line with slope uh = eh lnu, going
through the point

(
h, uh

)
. Using point-slope form, the line will be

y − eh lnu = lnueh lnu (x− h)

which, when turned into slope-intercept form becomes

y = x · eh lnu lnu− eh lnu (h lnu− 1) (1)

We can now make good use of what might have seemed an idle observation at
the time: of all the various forms for the equation of a line, slope-intercept is

the one for which each line has only one way to be expressed. This means that
if (1) is to be the line y = x, we need to have

eh lnu lnu = 1, eh lnu (h lnu− 1) = 0

The second equation is easy to solve: since ex 6= 0 for any x, the only way
it can work is to have

h lnu = 1

h =
1

lnu

This shows that our line will have the required tangent at the point
(

1
lnu

, e
1

lnu
·lnu

)
=

(
1

lnu
, e
)
. But we are also on the line y = x, so we can write the point as (e, e),

and this means 1
lnu

= e, or lnu = e−1, or u = e
1

e ! We can confirm this, by
taking on the first equation: plug the value of h = 1

lnu
in, and get

e · lnu = 1

lnu = e−1

u = e
1

e

There you have it! This special exponential is
(
e

1

e

)x

= e
x

e and, since

ln
(
e

1

e

)
= 1

e
, it touches the line y = x (and hence the graph of log

e
1

e

x =
ln x

ln
(
e

1

e

) = ln x
1

e

= e lnx) at the point (e, e)!
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Looking now at the second graph in sec. 3, you’ll notice that this situation
never applies when u < 1. In fact, in the discussion above, we didn’t force u > 1
- it just came out that way. So, there’s only one base with the feature of having
its two graphs “just touching”: e

1

e ≈ 1.4447. The “touching” occurs at the point
(e, e) ≈ (2.7183, 2.7183).

Note: Another way to answer our question would be to look at the intersection
of ux (or of log

u
x) with the line y = x. This leads in both cases1 to

solving
lnx

x
= lnu

If we draw the graph of ln x

x
, we can see the general picture. Here is the graph

of y = lnx

x

2.

1 In fact, the system
{

y = u
x

y = x

leads to x = u
x, lnx = x · lnu, and the system

{

y = log
u
x

y = x

leads to x = log
u
x = lnx

lnu
.

2 You will notice that the two axes have different units. This is done in order to amplify

the variation of the curve in the vertical direction: otherwise it would be difficult to spot the

change in behavior as x grows from 0 to 1, to e increasing, and then starts to decrease.
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For y ≤ 0 (i.e., for 0 < x ≤ 1) there is only one solution. Compare the
green line y = −0.1. Then, for 0 ≤ y < ŷ, 1 < x < x̂ (right hand values to
be determined), we have two solutions: compare the other green line y = 0.1.
Finally, for y = ŷ, x = x̂ we have one solution - compare the brown line. That’s
the value we are looking for. This value is also where the function ln x

x
takes its

maximum value! Unfortunately, I could not come up with an elementary method
to determine this value, but with just minimal calculus it would be easy to realize
that ln x

x
reaches a maximum when x̂ = e. Consequently, ln û = ln x̂

x̂
= 1

e
. Hence,

we get the same result as above is started with a question (the intersections of
y = ux, y = logu x, y = x where e didn’t appear anywhere, or play any special
role. And yet, the solution is all about this number! Yet another suggestion that
this number has a special standing when dealing with powers and logarithms.

4 Change Of Base Formula In Practice

Here is a tiny program in MATLAB (a C-like language, well known for its robust
numerical capabilities):

function lg(x,a)

>num=log(x)

>den=log(a)

>lg=num/den

>endfunction

This function takes to positive values x, and a, and calculates log x

log a
= loga x.

MATLAB, like any other computer language, does not have a log function for
each possible base. In fact, it only uses natural logarithms (that is, the function
log(x) returns what our book would call ln(x)). It’s easy, however to create
your own function that will give you any log in any base, as you can see.


