
Bases For Logarithms

1 What's a base for a logarithm?

We saw in the book that you an, at least in priniple, ompute the logarithm of

a number in any positive base a 6= 1, sine loga x is simply the inverse funtion

of the exponential funtion ax.

However, you will have notied too that your alulator (and any mathe-

matial software you may meet) lists only logarithm funtions with one or two

bases. In fat, given the �hange of base� formula, if you are able to ompute

logarithm in a base, you an ompute them in any other base.

The bases that are atually used, outside of book problems, are 10, e (a

�very� irrational number - strange, but it is the most onvenient base of all),

and (mostly in spei� appliation �elds) 2. Let's see what propels these bases
to the forefront.

2 10 as a base for logarithms

You must realize that before the advent of eletroni digital omputers, alu-

lations had to be performed �by hand�. In partiular, while adding mahines

are easy to build, multipliation presents a bigger hallenge - not to mention

exponentiation. As you might have noted, long alulations involving ompli-

ated numbers appear really soon when you start working �nanial problems

(think ompound interest). Also, alulations with non trivial numbers ome

up in all parts of siene, as well as in very many applied �elds. The way people

handled suh alulations was to redue their omplexity by referring to a table

of logarithms.

1

Suppose you had a book, whih (to a ertain preision) allowed you to read

o� the logarithm (in some base a) of all numbers up to really big ones. And

suppose the same book allowed you to go bak, given the logarithm of a number,

and �nd the number itself. Now, if you had to ompute x · y, where x and y

might be numbers with many digits, you ould, �rst, ompute

loga x+ loga y = Z

1

For the sake of full dislosure, I have to admit that your instrutor knows of this, �rst-

hand. As a high-shool student, he was subjeted to learning how to use logarithm tables,

sine, at that time, alulators were not yet available, and omputers, with a lot less omputing

power than your urrent ell phone, were the size of a big room.
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(addition is muh easier to do - and an adding mahine would speed you up

onsiderably), and then, simply read o� whih number z it is for whih

loga z = Z

(of ourse, by de�nition, aZ = z, but that ould be a di�ult alulation - hene

the use of a table).

One you are set on this program, you will have to hoose a standard base

a to alulate your table (whih is a nontrivial operation, but it has to be

done only one, so to speak). It quikly turns out that, sine we use a �base

10� numbering system, hoosing a = 10 makes the preparation of our book

onsiderably simpler

2

.

How so? Maybe, it's best to see it through a ouple of examples. Suppose we

need to ompute log10 4327, log10 43.27, log10 0.4327. The numbers only di�er by

multiples of 10... Let's write the �rst two as

4327 = 0.4327 · 104 43.27 = 0.4327 · 102

Now,

log10 4327 = log10
(

0.4327 · 104
)

= log10 (0.4327)+log10
(

104
)

= 4+log10 (0.4327)

sine, learly, log10
(

104
)

= 4. Similarly,

log10 43.27 = log10
(

0.4327 · 102
)

= log10
(

102
)

+log10 (0.4327) = 2+log10 (0.4327)

As you an see, we only need the deimal logarithms of numbers between 0
and 1, to ompute immediately the logs of any other number. Atually, with a

little manipulation, we an use the deimals logs of numbers between 10−1 = 0.1,
and 1 = 100 to ompute all other deimal logs. Sine we annot ompute the

logarithms of �all� numbers between 0.1 and 1, we will limit ourselves to those

with a deimal expansion that is less than some reasonable hoie (4, 5, 7, ...

digits), and, onsequently, will be able to ompute the logarithm of numbers

given with the same preision.

This alulation tool in�uened the introdution of ertain units of measure-

ments that are given in terms of the deimal logarithm of a quantity - like the

pH, for measuring the onentration of Hydrogen ions in a solution (its aidity),

or deibels, for measuring the intensity of a sound.

Aside from the appliation we just quoted, you surely realize how the advent

of digital alulators and omputers have made the use of deimal logarithms all

but obsolete! Sine the ease with whih we an express log10 of a number one

2

In fat, if Martians existed, and had, say, 12 �ngers, they might have hosen 12 as their

number base, and the �easy� hoie for a logarithm base would have been a = 12. As a matter

of fat, 10 is a pretty ine�ient base for a numbering system - think how most ommon

frations have an unending deimal expansion, inluding

1

3
,
1

6
, et. - and 12 would have

been a better hoie (the anient Babylonians made a gutsy hoie - 60 - whih produes

ompliated notation, but very e�ient representations for ommon frations), but we are so

used to ounting on our �ngers...
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we know log10 of the number between 0.1 and 1 we get by multiplying it by a

suitable power of 10 is the only good reason to introdue 10 as a base, �ommon

logarithms�, as they are also alled, have disappeared from the mathematial

sene: if you are ever going to take a math lass at a level higher than introdu-

tory alulus, the notation log, without the mention of a base, will be reversed

to natural logarithms, and the ln notation will be abandoned (or beome very

rare) - that's beause in alulus you quikly realize that base e is the only base

you really want to deal with, and 10 has, by now, no better reason to be hosen

as a base than, say, 123, or 43.8901...

3 Base 2

Nobody mentioned base 2 in this ourse, so why is it interesting? It is interesting

nowadays, when we are hooked on digital omputers. As you know, any objet in

a omputer (numbers, letters, symbols, whatever) is represented as a sequene

of 0 and 1. In partiular, numbers are expressed in this way by using their

representation in base 2. For instane, we write 21 to mean �twenty-one�, in

that

21 = 2× 101 + 1× 100

The same number an be expressed in terms of powers of 2, as in

21 = 16 + 4 + 1 = 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

as 10101. In general, you an �ode� any information as a sequene of 0s and 1s.

Now, the length of suh a sequene is an indiation of the relative omplexity of

the information. How long is the length of the oding for 21? Clearly, 5. What

is log2 21? Well, sine 21 = 24 +22 + 1, its log2 lies between 4 and 5. Hene we
an �measure� the �omplexity� of a binary oded piee of information by the

integer part (plus 1, if you want to be piky) of its log2.

4 Base e

How in the world did people ome upon the idea that e is the �best� base

for logarithms (and for exponentials too: instead of omputing ax, people will

ompute ex·lna
)? The reason will be really lear one you get to alulus. Right

now, the onveniene of e is far from apparent. We an point to two fats that

may provide at least the start for an explanation

4.1 Compound Interest

You know the formula for ompound interest: if you are borrowing P dollars at

(annual) interest rate r, and the interest is ompounded n times in a year (at

equally spaed intervals), if you wait t years, your debt will have risen to

P
(

1 +
r

n

)nt

(1)



4 Base e 4

Now, the late Renaissane was highlighted by the rise of a powerful lass of

(greedy) bankers, who were quik to note that without touhing r, you an

squeeze more from your loan, if you inrease n. That's how interest grew in

�nding out what happens to (1) when n inreases without bounds.

It is not a trivial fat (whih is shown in alulus lasses) that the number

(

1 +
r

n

)n

is bounded between 2 and 3, and you an ondut your own numerial exper-

iment with your alulator (or omputer) to see that, more or less, when n is

big enough

(

1 +
1

n

)n

≃ e = 2.71 . . .

Thus, the use of the new formula

Pert

for the value of a loan at annual interest rate r, after t years, if interest is

ompounded �instantaneously�. At least, it shows that no matter how often you

ompound interest, there is a limit on the growth of the debt: a loan at 100%

interest rate, will be worth twie its original value after one year, at simple

interest; at instantaneously ompounded interest, it will be worth more than

2.71 times its original value - a big inrease, but not an �in�nitely big� one.

4.2 Rate of Growth

This is the most important �good� feature of the funtion ekx - and, onse-

quently, of lnx. To look at it before alulus, we'll have to be somewhat ap-

proximate, but you should get a reasonable idea.

Consider the rate of growth of a ompound interest deposit. Let's start at

time t = 0, and suppose interest is ompounded every s years (e.g., s = 1
12 ,

if interest is ompounded monthly). Usually, s = 1
n
, were n is the number of

ompounding times in a year. Between 0 and s, your money grows linearly:

if you start with $1, and the interest rate is r, you have, after t < s, 1 + rt.

At time s, when you are at 1 + rs, this beomes your new prinipal, and you

start aquiring interest on this sum too. So, for s < t < 2s, you will have

(1+ rs)+(1+ rs)(t−s). You see that your money is growing again linearly, but

the onstant of proportionality, for the time in exess of s, is now your deposit

at time s. At t = 2s it all starts over again, and in the next interval your growth

will be linear in (t − 2s), with a proportionality onstant equal to your total

deposit at time 2s.
Summing up, assuming s is very small, you see that, at any given time, the

money in your deposit in inreasing, over very small time intervals, proportion-

ally to your total deposit at the most reent time equal to a multiple of s. Hene,

as s beomes very small, (if s = 1
n
, as n beomes very big), you ould say that

your deposit is growing, at eah instant, at a rate proportional to its urrent
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size (after all, you are always at a very short time from the last ,multiple of s).

This property is a property of the funtion ekx, of ourse: approximately, over a

time interval [ms,ms+ t], it will grow at a rate equal to kek(ms)
. Sine t annot

be too big (it is less than the very small s), we an say that the rate of inrease

of the funtion ekx is pratially equal to kekx (x = ms+ t ≈ ms).

This �self-proportional� rate of growth is true for every exponential funtion

akx (a > 1), but the proportionality onstant happens then not to be k, but

k · ln a. Thus the hoie of e as a base, simpli�es the analysis of how your

funtion is growing!

All of this an be made muh more preise and lear with the tools of al-

ulus (whih, in fat, was developed spei�ally to handle things like rate of

hange in funtions). The bottom line, though, is that exponential funtions

have this property (and they are the only ones that do) of �self-proportional

growth�, that suggests their use in any situation in whih you an assume that

rate. Additionally, among all possible expressions for an exponential funtions,

the one using e as a base is the learest, sine the proportionality onstant is

preisely the oe�ient in the exponent!

One of the most famous examples is the Malthusian model of population

growth: assuming that a population growth rate has to be, at eah time, pro-

portional to its size (the more individuals, the more o�springs), Malthus ame

up with the exponential growth model P (t) = P0e
kt
, where P0 is the population

at time t = 0, and k is the proportionality onstant measuring the �fertility� of

the population.

Negative growth rates mean, of ourse, rapid deline, and a prototypial

appliation is the standard model for radioative deay: starting at time t = 0
with a ertain mass M0 of radioative material, its deay over time will leave us,

at time t, with a mass of M(t) = M0e
−kt

, where k > 0 is a onstant measuring

the rate of deay (this is a rate of derease for the mass: the more mass, the

more hanes for an atom to deay, hene a faster rate of deline for the funtion

M(t)).


