
Bases For Logarithms

1 What's a base for a logarithm?

We saw in the book that you 
an, at least in prin
iple, 
ompute the logarithm of

a number in any positive base a 6= 1, sin
e loga x is simply the inverse fun
tion

of the exponential fun
tion ax.

However, you will have noti
ed too that your 
al
ulator (and any mathe-

mati
al software you may meet) lists only logarithm fun
tions with one or two

bases. In fa
t, given the �
hange of base� formula, if you are able to 
ompute

logarithm in a base, you 
an 
ompute them in any other base.

The bases that are a
tually used, outside of book problems, are 10, e (a

�very� irrational number - strange, but it is the most 
onvenient base of all),

and (mostly in spe
i�
 appli
ation �elds) 2. Let's see what propels these bases
to the forefront.

2 10 as a base for logarithms

You must realize that before the advent of ele
troni
 digital 
omputers, 
al
u-

lations had to be performed �by hand�. In parti
ular, while adding ma
hines

are easy to build, multipli
ation presents a bigger 
hallenge - not to mention

exponentiation. As you might have noted, long 
al
ulations involving 
ompli-


ated numbers appear really soon when you start working �nan
ial problems

(think 
ompound interest). Also, 
al
ulations with non trivial numbers 
ome

up in all parts of s
ien
e, as well as in very many applied �elds. The way people

handled su
h 
al
ulations was to redu
e their 
omplexity by referring to a table

of logarithms.

1

Suppose you had a book, whi
h (to a 
ertain pre
ision) allowed you to read

o� the logarithm (in some base a) of all numbers up to really big ones. And

suppose the same book allowed you to go ba
k, given the logarithm of a number,

and �nd the number itself. Now, if you had to 
ompute x · y, where x and y

might be numbers with many digits, you 
ould, �rst, 
ompute

loga x+ loga y = Z

1

For the sake of full dis
losure, I have to admit that your instru
tor knows of this, �rst-

hand. As a high-s
hool student, he was subje
ted to learning how to use logarithm tables,

sin
e, at that time, 
al
ulators were not yet available, and 
omputers, with a lot less 
omputing

power than your 
urrent 
ell phone, were the size of a big room.
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(addition is mu
h easier to do - and an adding ma
hine would speed you up


onsiderably), and then, simply read o� whi
h number z it is for whi
h

loga z = Z

(of 
ourse, by de�nition, aZ = z, but that 
ould be a di�
ult 
al
ulation - hen
e

the use of a table).

On
e you are set on this program, you will have to 
hoose a standard base

a to 
al
ulate your table (whi
h is a nontrivial operation, but it has to be

done only on
e, so to speak). It qui
kly turns out that, sin
e we use a �base

10� numbering system, 
hoosing a = 10 makes the preparation of our book


onsiderably simpler

2

.

How so? Maybe, it's best to see it through a 
ouple of examples. Suppose we

need to 
ompute log10 4327, log10 43.27, log10 0.4327. The numbers only di�er by

multiples of 10... Let's write the �rst two as

4327 = 0.4327 · 104 43.27 = 0.4327 · 102

Now,

log10 4327 = log10
(

0.4327 · 104
)

= log10 (0.4327)+log10
(

104
)

= 4+log10 (0.4327)

sin
e, 
learly, log10
(

104
)

= 4. Similarly,

log10 43.27 = log10
(

0.4327 · 102
)

= log10
(

102
)

+log10 (0.4327) = 2+log10 (0.4327)

As you 
an see, we only need the de
imal logarithms of numbers between 0
and 1, to 
ompute immediately the logs of any other number. A
tually, with a

little manipulation, we 
an use the de
imals logs of numbers between 10−1 = 0.1,
and 1 = 100 to 
ompute all other de
imal logs. Sin
e we 
annot 
ompute the

logarithms of �all� numbers between 0.1 and 1, we will limit ourselves to those

with a de
imal expansion that is less than some reasonable 
hoi
e (4, 5, 7, ...

digits), and, 
onsequently, will be able to 
ompute the logarithm of numbers

given with the same pre
ision.

This 
al
ulation tool in�uen
ed the introdu
tion of 
ertain units of measure-

ments that are given in terms of the de
imal logarithm of a quantity - like the

pH, for measuring the 
on
entration of Hydrogen ions in a solution (its a
idity),

or de
ibels, for measuring the intensity of a sound.

Aside from the appli
ation we just quoted, you surely realize how the advent

of digital 
al
ulators and 
omputers have made the use of de
imal logarithms all

but obsolete! Sin
e the ease with whi
h we 
an express log10 of a number on
e

2

In fa
t, if Martians existed, and had, say, 12 �ngers, they might have 
hosen 12 as their

number base, and the �easy� 
hoi
e for a logarithm base would have been a = 12. As a matter

of fa
t, 10 is a pretty ine�
ient base for a numbering system - think how most 
ommon

fra
tions have an unending de
imal expansion, in
luding

1

3
,
1

6
, et
. - and 12 would have

been a better 
hoi
e (the an
ient Babylonians made a gutsy 
hoi
e - 60 - whi
h produ
es


ompli
ated notation, but very e�
ient representations for 
ommon fra
tions), but we are so

used to 
ounting on our �ngers...
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we know log10 of the number between 0.1 and 1 we get by multiplying it by a

suitable power of 10 is the only good reason to introdu
e 10 as a base, �
ommon

logarithms�, as they are also 
alled, have disappeared from the mathemati
al

s
ene: if you are ever going to take a math 
lass at a level higher than introdu
-

tory 
al
ulus, the notation log, without the mention of a base, will be reversed

to natural logarithms, and the ln notation will be abandoned (or be
ome very

rare) - that's be
ause in 
al
ulus you qui
kly realize that base e is the only base

you really want to deal with, and 10 has, by now, no better reason to be 
hosen

as a base than, say, 123, or 43.8901...

3 Base 2

Nobody mentioned base 2 in this 
ourse, so why is it interesting? It is interesting

nowadays, when we are hooked on digital 
omputers. As you know, any obje
t in

a 
omputer (numbers, letters, symbols, whatever) is represented as a sequen
e

of 0 and 1. In parti
ular, numbers are expressed in this way by using their

representation in base 2. For instan
e, we write 21 to mean �twenty-one�, in

that

21 = 2× 101 + 1× 100

The same number 
an be expressed in terms of powers of 2, as in

21 = 16 + 4 + 1 = 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

as 10101. In general, you 
an �
ode� any information as a sequen
e of 0s and 1s.

Now, the length of su
h a sequen
e is an indi
ation of the relative 
omplexity of

the information. How long is the length of the 
oding for 21? Clearly, 5. What

is log2 21? Well, sin
e 21 = 24 +22 + 1, its log2 lies between 4 and 5. Hen
e we

an �measure� the �
omplexity� of a binary 
oded pie
e of information by the

integer part (plus 1, if you want to be pi
ky) of its log2.

4 Base e

How in the world did people 
ome upon the idea that e is the �best� base

for logarithms (and for exponentials too: instead of 
omputing ax, people will


ompute ex·lna
)? The reason will be really 
lear on
e you get to 
al
ulus. Right

now, the 
onvenien
e of e is far from apparent. We 
an point to two fa
ts that

may provide at least the start for an explanation

4.1 Compound Interest

You know the formula for 
ompound interest: if you are borrowing P dollars at

(annual) interest rate r, and the interest is 
ompounded n times in a year (at

equally spa
ed intervals), if you wait t years, your debt will have risen to

P
(

1 +
r

n

)nt

(1)
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Now, the late Renaissan
e was highlighted by the rise of a powerful 
lass of

(greedy) bankers, who were qui
k to note that without tou
hing r, you 
an

squeeze more from your loan, if you in
rease n. That's how interest grew in

�nding out what happens to (1) when n in
reases without bounds.

It is not a trivial fa
t (whi
h is shown in 
al
ulus 
lasses) that the number

(

1 +
r

n

)n

is bounded between 2 and 3, and you 
an 
ondu
t your own numeri
al exper-

iment with your 
al
ulator (or 
omputer) to see that, more or less, when n is

big enough

(

1 +
1

n

)n

≃ e = 2.71 . . .

Thus, the use of the new formula

Pert

for the value of a loan at annual interest rate r, after t years, if interest is


ompounded �instantaneously�. At least, it shows that no matter how often you


ompound interest, there is a limit on the growth of the debt: a loan at 100%

interest rate, will be worth twi
e its original value after one year, at simple

interest; at instantaneously 
ompounded interest, it will be worth more than

2.71 times its original value - a big in
rease, but not an �in�nitely big� one.

4.2 Rate of Growth

This is the most important �good� feature of the fun
tion ekx - and, 
onse-

quently, of lnx. To look at it before 
al
ulus, we'll have to be somewhat ap-

proximate, but you should get a reasonable idea.

Consider the rate of growth of a 
ompound interest deposit. Let's start at

time t = 0, and suppose interest is 
ompounded every s years (e.g., s = 1
12 ,

if interest is 
ompounded monthly). Usually, s = 1
n
, were n is the number of


ompounding times in a year. Between 0 and s, your money grows linearly:

if you start with $1, and the interest rate is r, you have, after t < s, 1 + rt.

At time s, when you are at 1 + rs, this be
omes your new prin
ipal, and you

start a
quiring interest on this sum too. So, for s < t < 2s, you will have

(1+ rs)+(1+ rs)(t−s). You see that your money is growing again linearly, but

the 
onstant of proportionality, for the time in ex
ess of s, is now your deposit

at time s. At t = 2s it all starts over again, and in the next interval your growth

will be linear in (t − 2s), with a proportionality 
onstant equal to your total

deposit at time 2s.
Summing up, assuming s is very small, you see that, at any given time, the

money in your deposit in in
reasing, over very small time intervals, proportion-

ally to your total deposit at the most re
ent time equal to a multiple of s. Hen
e,

as s be
omes very small, (if s = 1
n
, as n be
omes very big), you 
ould say that

your deposit is growing, at ea
h instant, at a rate proportional to its 
urrent
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size (after all, you are always at a very short time from the last ,multiple of s).

This property is a property of the fun
tion ekx, of 
ourse: approximately, over a

time interval [ms,ms+ t], it will grow at a rate equal to kek(ms)
. Sin
e t 
annot

be too big (it is less than the very small s), we 
an say that the rate of in
rease

of the fun
tion ekx is pra
ti
ally equal to kekx (x = ms+ t ≈ ms).

This �self-proportional� rate of growth is true for every exponential fun
tion

akx (a > 1), but the proportionality 
onstant happens then not to be k, but

k · ln a. Thus the 
hoi
e of e as a base, simpli�es the analysis of how your

fun
tion is growing!

All of this 
an be made mu
h more pre
ise and 
lear with the tools of 
al-


ulus (whi
h, in fa
t, was developed spe
i�
ally to handle things like rate of


hange in fun
tions). The bottom line, though, is that exponential fun
tions

have this property (and they are the only ones that do) of �self-proportional

growth�, that suggests their use in any situation in whi
h you 
an assume that

rate. Additionally, among all possible expressions for an exponential fun
tions,

the one using e as a base is the 
learest, sin
e the proportionality 
onstant is

pre
isely the 
oe�
ient in the exponent!

One of the most famous examples is the Malthusian model of population

growth: assuming that a population growth rate has to be, at ea
h time, pro-

portional to its size (the more individuals, the more o�springs), Malthus 
ame

up with the exponential growth model P (t) = P0e
kt
, where P0 is the population

at time t = 0, and k is the proportionality 
onstant measuring the �fertility� of

the population.

Negative growth rates mean, of 
ourse, rapid de
line, and a prototypi
al

appli
ation is the standard model for radioa
tive de
ay: starting at time t = 0
with a 
ertain mass M0 of radioa
tive material, its de
ay over time will leave us,

at time t, with a mass of M(t) = M0e
−kt

, where k > 0 is a 
onstant measuring

the rate of de
ay (this is a rate of de
rease for the mass: the more mass, the

more 
han
es for an atom to de
ay, hen
e a faster rate of de
line for the fun
tion

M(t)).


