
Least Mean Squares

1 What is the �line of best �t�?

The book suggests that, given a satterplot of data in a plane that we would

like to summarize with a straight line that �approximates as best as we an� the

data, we use a alulator with a dediated key (probably labeled LMS ) to �nd

an equation for this purpose. But what is the alulator doing?

The logi behind the Least Mean Squares or Regression line is usually dis-

ussed in introdutory Statistis lasses, sine the most stringent argument for

its use relies on a spei� (probabilisti) modeling for the data. We will not go

into the logi of the argument, but the result is the following.

Suppose we have a number of data points of the form (x1, y1) , (x2, y2) , . . . , (xn, yn).
In many ases, we think of the �rst oordinates as �xed (for example, they may

be time points, as in years), and of the seond oordinates as subjet to devia-

tions from an exat linear dependene on the �rst. For example, we might think

that there should be an approximate linear relation between eduation level and

average salary, but the observations will ertainly not lead to an exat line. We

now try to �nd a line suh that, the y's orresponding to the xi's by the line

will di�er �as little as possible for the observed yi's�. There is more than one

way to de�ne �as little as possible�, but the most ommon one is to hoose the

line y = ax+ b that makes the sum of the squares of the di�erenes yi− axi − b

as small as possible (hene Least Mean Squares).

Why the squares? When the statistial model we mentioned applies, there is

a rigorous mathematial reason for this hoie, but this method is applied muh

more broadly, in whih ase, the best justi�ation is that the math is muh more

onvenient than with other hoies (as in the sum of the absolute values of the

di�erenes, whih an also be used, but is more umbersome to work with).

1



1 What is the �line of best �t�? 2

In this piture, the blue irles are the data points, the green line is a andi-

date for the LMS line, and the blak irles are the points on this line aliasing

the atual data points. The red segments are the disrepany between the �the-

oretial� points (xi, ŷi = axi + b) and the true data points (xi, yi). The line we
will hoose will be the one that makes the sum of the squares of the lengths of

the red segments smallest.

This means, of four data points as in the piture, to �nd a and b suh that

(y1 − ax1 − b)
2
+ (y2 − ax2 − b)

2
+ (y3 − ax3 − b)

2
+ (y4 − ax4 − b)

2
=

= a2
(

x2
1 + x2

2 + x2
3 + x2

4

)

+ 4b2 − 2ab (x1 + x2 + x3 + x4)−

−2a (x1y1 + x2y2 + x3y3 + x4y4)− 2b (y1 + y2 + y3 + y4)+

+y21 + y22 + y23 + y24

is as small as possible. Let's write this funtion of a and b in abbreviated

notation as

F (a, b) = a2X2 + 4b2 − 2abX1 − 2aXY − 2bY1 + Y2 (1)

This is a quadrati funtion, but it depends on two variables, so we don't really

have a tool to �nd its lowest values right now (in your seond Prealulus lass

you will be introdued to quadrati funtions in two variables). We an �nd the

lowest value in a speial ase: suppose that, for general reasons, we are looking

for a line that has to go though the origin (0, 0) (e.g., we are mathing observa-

tions to a theoretial model that expets the relation to be of the form y = ax

� an example would be Ohm's law onneting urrent intensity and voltage as

I = 1

R
V , where R is the resistane of the iruit, and using measurements of

urrent orresponding to various voltages to determine

1

R
). Sine we are foring



1 What is the �line of best �t�? 3

b = 0, we now have a quadrati funtion in a, a2X2−2aXY +Y2, and it slowest

value (the quadrati funtion has a positive oe�ient for a2, so its vertex is a

minimum) ours at

a =
2XY

2X2

=
x1y1 + x2y2 + x3y3 + x4y4

x2
1 + x2

2 + x2
3 + x2

4

To �nd a formula for a and b in the general ase, while we wait for additional

tools, we might aept, on trust, that a and b should be related by the equation

y1 + y2 + y3 + y4

4
= a

x1 + x2 + x3 + x4

4
+ b (2)

so that

b =
y1 + y2 + y3 + y4

4
− a

x1 + x2 + x3 + x4

4
=

Y1

4
− a

X1

4
(3)

For a plausibility argument why they should be onneted by the averages

of the data look at the end of this �le.

Substituting in the expression (1) results in a quadrati funtion of a only,

whose minimum we an again �nd using the vertex formula. The end result is

what your alulator omputes when asked for the regression equation:

a =
4XY −X1Y1

4X2 − (X1)
2

and b given by (3). Of ourse, all the ourrenes of �4� in these formulas are

simply the size of the data set. If we had 20 points, we would get the same

formulas, but with 20 in plae of 4.

Why �Regression�?

The name has nothing to do with the mathematial tool we are using. It refers

to one of the �rst, and famous, appliations of the method, where the heights of

hildren were ompared with the heights of their parents. The data suggested

that hildren of tall parents tend to be taller than the mean, and hildren of

short parents to be shorter than the mean, but in both ases the deviation from

the mean tended to be less pronouned, hene to exhibit a regression to the

mean.

Why equation (3)?

It is not unreasonable that averages are the quantities that minimize squared

disrepanies. A simple motivation an be found in this fat:

Fat: Given data points x1, x2, . . . , xn, the number m minimizing the sum of the

squares of the di�erenes xi −m is the average x̄ = x1+x2...+xn

n
.
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The proof is again in the vertex formula:

(x1 −m)
2
+(x2 −m)

2
+. . .+(xn −m)

2
= nm2

−2m (x1 + x2 + . . .+ xn)+x2
1+. . . x2

n

a quadrati funtion (in m), whose vertex is at

m = x̄ =
x1 + . . .+ xn

n
(4)

Another rough argument for (3)

The idea (from the statistis approah) of regression is that the yi's and xi's

should be related by

yi = axi + b+ εi (5)

, where the εi's are �errors� that average out to zero. So, taking the mean

of the two sides in (5) we would have (add all terms and divide by n), using

�sigma-notation�

1

∑

yi = a
∑

xi + nb+
∑

εi

1

n

∑

yi = a
1

n

∑

xi + b+
1

n

∑

εi

Sine we assumed that ε ≡
1

n

∑

εi = 0, we have the generalization of (2) to n

data points. The argument is not really a proof, sine the assumption of zero

error average is not really solid for a �nite number of data points (again, see a

statistis disussion for this).

Can we address the general ase?

You will notie from (1) that, in the partiular ase whenX1 = x1+x2+x3+x4 =
0, the funtion an be seen as the sum of two separate quadrati funtions, one

of of a and one of funtion of b. It is intuitive (and true) that the lowest value

an be found by minimizing the two funtions separately. And, indeed, in this

ase, the resulting formulas are the LMS solution. Still, what if that is not the

ase? We an still �nd the appropriate formula if we shift the xk data by their

mean, that is working the regression line for the pairs (zk = xk − x, yk) (x is

the mean in (4)). You an hek yourself that there will be no ab term in this

new oordinates, and that we an reover the �true� line by shifting bak the

line omputed in terms of the zk's.

One last remark

The ommon way to justify the linear Least Mean Squares formula is through

di�erential alulus (you need alulus for funtions of two variable). However,

this problem is about a polynomial (even if in two variables), and it turns out

that what you an do about polynomials with alulus, you an do with a little

algebra and a few simple observations, without the need to bring in the heavy

artillery. You may �nd a disussion of this in another omplementary �le.

1

the shorthand

∑

xi stands for x1 + x2 + . . .+ xn
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2 Fitting Nonlinear Data

2.1 Polynomial Fits

Finding a line of best �t, as disussed above, is a ommon method for identi-

fying trends, even when the satterplot does not really suggest a linear model.

However, there are many ases where a linear approximation will just not be a

good summary of the data.

The book suggests to extend the Least Mean Squares Method and approx-

imate data with peaks and valleys with a polynomial. This is tehnially easy

(although it requires to �nd the minimum of a funtion of more than two vari-

ables, and is thus de�nitely out of our toolbox), but is often not a very good

approah.

For one thing, the rigorous underpinning of linear regression is no longer

available. That is, least mean squares rests on a muh more ad-ho basis.

Mainly, though, the problem is that polynomials, while very important as

tools, are rarely a theoretially justi�ed model, as opposed to linear funtions

and, oming up soon, exponential and logarithmi funtions. Even quadrati

funtions have a relatively limited sope: notie, from examples and exerises,

how they work for the motion of a body thrown in a gravity �eld (and then, only

ignoring air frition, and only for trajetories lose to earth), and for planning

retangular fenes, but little else.

It is true that data exhibiting a turnaround (a maximum or a minimum) an

often be well approximated with a quadrati funtion, but this approximation

breaks down almost inevitably as soon as we look farther from the turnaround,

hene, suh a model has almost no value for predition purposes (whih is, after

all, the main advantage of having a model).

In fat, trying to �nd a polynomial that will mimi a number of wiggles in the

data may easily lead to over�tting, that is oming up with a funtion that hases

after every little perturbation in the data, masking whatever ore behavior may

lie behind, and failing dramatially as soon as the model is applied beyond the

range of the available data. After all, n data points an always be exatly �tted

with a polynomial of degree n− 1, but suh a �t is ompletely useless as it will

miss any subsequent additional data, and will lead to ompletely unrealisti

foreasts.

2.2 Exponential and power �ts

Many situations lead to exponential models (e.g., population dynamis, radioa-

tive deay, ompound interest, and more), so �tting data that should be modeled

this way is useful. One again, the least mean squares approah is onvenient,

but has little theoretial underpinning. One way is to �t data that we hope

should �t like

(

x,Aekx
)

, by �rst taking the logarithm of the seond omponent,

as in (x, lnA+ kx) that orresponds to a linear model. Though fairly ommon,

the logi of using an LMS approah is even weaker, sine it is not �natural� to

assume that it is the logarithm of the data that is a�eted by an error with
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ommon spread.

While polynomial �tting is usually ompletely ad-ho, it may happen that

some probabilisti models will lead to power funtions being a good andidate.

These are espeially popular with modeling of rare events, like the time of

ourrene of earthquakes. This is an interesting area, but you would have to

go beyond even elementary statistis for an overview.


