Least Mean Squares

1 What is the “line of best fit"’?

The book suggests that, given a scatterplot of data in a plane that we would
like to summarize with a straight line that “approximates as best as we can” the
data, we use a calculator with a dedicated key (probably labeled LMS) to find
an equation for this purpose. But what is the calculator doing?

The logic behind the Least Mean Squares or Regression line is usually dis-
cussed in introductory Statistics classes, since the most stringent argument for
its use relies on a specific (probabilistic) modeling for the data. We will not go
into the logic of the argument, but the result is the following.

Suppose we have a number of data points of the form (z1,41) , (z2,92) s - - -, (Tn, Yn).
In many cases, we think of the first coordinates as fixed (for example, they may
be time points, as in years), and of the second coordinates as subject to devia-
tions from an exact linear dependence on the first. For example, we might think
that there should be an approximate linear relation between education level and
average salary, but the observations will certainly not lead to an exact line. We
now try to find a line such that, the y’s corresponding to the z;’s by the line
will differ “as little as possible for the observed y;’s”. There is more than one
way to define “as little as possible”, but the most common one is to choose the
line y = ax + b that makes the sum of the squares of the differences y; — ax; — b
as small as possible (hence Least Mean Squares).

Why the squares? When the statistical model we mentioned applies, there is
a rigorous mathematical reason for this choice, but this method is applied much
more broadly, in which case, the best justification is that the math is much more
convenient than with other choices (as in the sum of the absolute values of the
differences, which can also be used, but is more cumbersome to work with).
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y=ary+b

(r1.1n) = ar; +b

In this picture, the blue circles are the data points, the green line is a candi-
date for the LMS line, and the black circles are the points on this line aliasing
the actual data points. The red segments are the discrepancy between the “the-
oretical” points (z;, §; = ax; + b) and the true data points (z;,y;). The line we
will choose will be the one that makes the sum of the squares of the lengths of
the red segments smallest.

This means, of four data points as in the picture, to find a and b such that

(y1 — az1 = b)* + (y2 — aws — b)* + (y3 — aws — b)* + (ya — aws — b)° =
=a® (2] + 23 + 23 +23) +4b° — 2ab (v1 + 22 + 23 + 4) —
—2a (w1y1 + T2y2 + T3y3 + 2aya) — 20 (Y1 + Y2 + Y3 +ya) +
Ui+ ys + Y3+ i

is as small as possible. Let’s write this function of a and b in abbreviated
notation as

F(a,b) = a®> Xy + 4b* — 2abX; — 2aXY — 2bY; + Y, (1)

This is a quadratic function, but it depends on two variables, so we don’t really
have a tool to find its lowest values right now (in your second Precalculus class
you will be introduced to quadratic functions in two variables). We can find the
lowest value in a special case: suppose that, for general reasons, we are looking
for a line that has to go though the origin (0,0) (e.g., we are matching observa-
tions to a theoretical model that expects the relation to be of the form y = ax
— an example would be Ohm’s law connecting current intensity and voltage as
1= %V, where R is the resistance of the circuit, and using measurements of

current, corresponding to various voltages to determine %) Since we are forcing
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b = 0, we now have a quadratic function in a, a>Xs —2a XY + Y5, and it slowest
value (the quadratic function has a positive coefficient for a2, so its vertex is a
minimum) occurs at

_ 2XY _ + Toyo + T3Y3 + T4Ys

a
2X5 xf—l—xg—l—xg—l—xﬁ

To find a formula for a and b in the general case, while we wait for additional
tools, we might accept, on trust, that a and b should be related by the equation

Y1+ Y2+ Y3+ ya :a$1+$2+$3+$4
4 4

+b (2)

so that

_ityatystys  mtmtaztazs Vi Xy

b 1 @ 1 R (3)

For a plausibility argument why they should be connected by the averages
of the data look at the end of this file.

Substituting in the expression (1) results in a quadratic function of a only,
whose minimum we can again find using the vertex formula. The end result is
what your calculator computes when asked for the regression equation:

L AXY X
14X, — (X1)°

and b given by (3). Of course, all the occurrences of “4” in these formulas are
simply the size of the data set. If we had 20 points, we would get the same
formulas, but with 20 in place of 4.

Why “Regression”?

The name has nothing to do with the mathematical tool we are using. It refers
to one of the first, and famous, applications of the method, where the heights of
children were compared with the heights of their parents. The data suggested
that children of tall parents tend to be taller than the mean, and children of
short parents to be shorter than the mean, but in both cases the deviation from
the mean tended to be less pronounced, hence to exhibit a regression to the
mean.

Why equation (3)?

It is not unreasonable that averages are the quantities that minimize squared
discrepancies. A simple motivation can be found in this fact:

Fact: Given data points x1, T2, ..., T,, the number m minimizing the sum of the

- L - = _ x1+x2...4TH
squares of the differences x; —m is the average T = HH72=%n
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The proof is again in the vertex formula:

(21 — m)>+(z2 —m)’+. . +(zn —m)® = nm?>—2m (1 + 29 + . .. + xp)+2+. .. 22

a quadratic function (in m), whose vertex is at

m:jle+"'+$” (4)
n

Another rough argument for (3)

The idea (from the statistics approach) of regression is that the y;’s and z;’s
should be related by
yi:CL{Ei—Fb—FEi (5)

, where the g;’s are “errors” that average out to zero. So, taking the mean
of the two sides in (5) we would have (add all terms and divide by n), using

“sigma-notation”!
Zyi = az:ﬂi —l—nb—i—Zai

1 1 1

nZyl —aanl—l—b—F nZEZ
Since we assumed that € = %Z g; = 0, we have the generalization of (2) to n
data points. The argument is not really a proof, since the assumption of zero
error average is not really solid for a finite number of data points (again, see a
statistics discussion for this).

Can we address the general case?

You will notice from (1) that, in the particular case when X7 = z14+xo+xs+x4 =
0, the function can be seen as the sum of two separate quadratic functions, one
of of a and one of function of b. It is intuitive (and true) that the lowest value
can be found by minimizing the two functions separately. And, indeed, in this
case, the resulting formulas are the LMS solution. Still, what if that is not the
case? We can still find the appropriate formula if we shift the z; data by their
mean, that is working the regression line for the pairs (2 = zx — T, yx) (T is
the mean in (4)). You can check yourself that there will be no ab term in this
new coordinates, and that we can recover the “true” line by shifting back the
line computed in terms of the z;’s.

One last remark

The common way to justify the linear Least Mean Squares formula is through
differential calculus (you need calculus for functions of two variable). However,
this problem is about a polynomial (even if in two variables), and it turns out
that what you can do about polynomials with calculus, you can do with a little
algebra and a few simple observations, without the need to bring in the heavy
artillery. You may find a discussion of this in another complementary file.

1 the shorthand Eml stands for 1 + 22 + ...+ xn
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2 Fitting Nonlinear Data

2.1 Polynomial Fits

Finding a line of best fit, as discussed above, is a common method for identi-
fying trends, even when the scatterplot does not really suggest a linear model.
However, there are many cases where a linear approximation will just not be a
good summary of the data.

The book suggests to extend the Least Mean Squares Method and approx-
imate data with peaks and valleys with a polynomial. This is technically easy
(although it requires to find the minimum of a function of more than two vari-
ables, and is thus definitely out of our toolbox), but is often not a very good
approach.

For one thing, the rigorous underpinning of linear regression is no longer
available. That is, least mean squares rests on a much more ad-hoc basis.

Mainly, though, the problem is that polynomials, while very important as
tools, are rarely a theoretically justified model, as opposed to linear functions
and, coming up soon, exponential and logarithmic functions. Even quadratic
functions have a relatively limited scope: notice, from examples and exercises,
how they work for the motion of a body thrown in a gravity field (and then, only
ignoring air friction, and only for trajectories close to earth), and for planning
rectangular fences, but little else.

It is true that data exhibiting a turnaround (a maximum or a minimum) can
often be well approximated with a quadratic function, but this approximation
breaks down almost inevitably as soon as we look farther from the turnaround,
hence, such a model has almost no value for prediction purposes (which is, after
all, the main advantage of having a model).

In fact, trying to find a polynomial that will mimic a number of wiggles in the
data may easily lead to overfitting, that is coming up with a function that chases
after every little perturbation in the data, masking whatever core behavior may
lie behind, and failing dramatically as soon as the model is applied beyond the
range of the available data. After all, n data points can always be ezactly fitted
with a polynomial of degree n — 1, but such a fit is completely useless as it will
miss any subsequent additional data, and will lead to completely unrealistic
forecasts.

2.2 Exponential and power fits

Many situations lead to exponential models (e.g., population dynamics, radioac-
tive decay, compound interest, and more), so fitting data that should be modeled
this way is useful. Once again, the least mean squares approach is convenient,
but has little theoretical underpinning. One way is to fit data that we hope
should fit like (z, Ae**), by first taking the logarithm of the second component,
as in (z,Iln A 4 kx) that corresponds to a linear model. Though fairly common,
the logic of using an LMS approach is even weaker, since it is not “natural” to
assume that it is the logarithm of the data that is affected by an error with
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common spread.

While polynomial fitting is usually completely ad-hoc, it may happen that
some probabilistic models will lead to power functions being a good candidate.
These are especially popular with modeling of rare events, like the time of
occurrence of earthquakes. This is an interesting area, but you would have to
go beyond even elementary statistics for an overview.



