
Least Mean Squares

1 What is the �line of best �t�?

The book suggests that, given a s
atterplot of data in a plane that we would

like to summarize with a straight line that �approximates as best as we 
an� the

data, we use a 
al
ulator with a dedi
ated key (probably labeled LMS ) to �nd

an equation for this purpose. But what is the 
al
ulator doing?

The logi
 behind the Least Mean Squares or Regression line is usually dis-


ussed in introdu
tory Statisti
s 
lasses, sin
e the most stringent argument for

its use relies on a spe
i�
 (probabilisti
) modeling for the data. We will not go

into the logi
 of the argument, but the result is the following.

Suppose we have a number of data points of the form (x1, y1) , (x2, y2) , . . . , (xn, yn).
In many 
ases, we think of the �rst 
oordinates as �xed (for example, they may

be time points, as in years), and of the se
ond 
oordinates as subje
t to devia-

tions from an exa
t linear dependen
e on the �rst. For example, we might think

that there should be an approximate linear relation between edu
ation level and

average salary, but the observations will 
ertainly not lead to an exa
t line. We

now try to �nd a line su
h that, the y's 
orresponding to the xi's by the line

will di�er �as little as possible for the observed yi's�. There is more than one

way to de�ne �as little as possible�, but the most 
ommon one is to 
hoose the

line y = ax+ b that makes the sum of the squares of the di�eren
es yi− axi − b

as small as possible (hen
e Least Mean Squares).

Why the squares? When the statisti
al model we mentioned applies, there is

a rigorous mathemati
al reason for this 
hoi
e, but this method is applied mu
h

more broadly, in whi
h 
ase, the best justi�
ation is that the math is mu
h more


onvenient than with other 
hoi
es (as in the sum of the absolute values of the

di�eren
es, whi
h 
an also be used, but is more 
umbersome to work with).
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In this pi
ture, the blue 
ir
les are the data points, the green line is a 
andi-

date for the LMS line, and the bla
k 
ir
les are the points on this line aliasing

the a
tual data points. The red segments are the dis
repan
y between the �the-

oreti
al� points (xi, ŷi = axi + b) and the true data points (xi, yi). The line we
will 
hoose will be the one that makes the sum of the squares of the lengths of

the red segments smallest.

This means, of four data points as in the pi
ture, to �nd a and b su
h that

(y1 − ax1 − b)
2
+ (y2 − ax2 − b)

2
+ (y3 − ax3 − b)

2
+ (y4 − ax4 − b)

2
=

= a2
(

x2
1 + x2

2 + x2
3 + x2

4

)

+ 4b2 − 2ab (x1 + x2 + x3 + x4)−

−2a (x1y1 + x2y2 + x3y3 + x4y4)− 2b (y1 + y2 + y3 + y4)+

+y21 + y22 + y23 + y24

is as small as possible. Let's write this fun
tion of a and b in abbreviated

notation as

F (a, b) = a2X2 + 4b2 − 2abX1 − 2aXY − 2bY1 + Y2 (1)

This is a quadrati
 fun
tion, but it depends on two variables, so we don't really

have a tool to �nd its lowest values right now (in your se
ond Pre
al
ulus 
lass

you will be introdu
ed to quadrati
 fun
tions in two variables). We 
an �nd the

lowest value in a spe
ial 
ase: suppose that, for general reasons, we are looking

for a line that has to go though the origin (0, 0) (e.g., we are mat
hing observa-

tions to a theoreti
al model that expe
ts the relation to be of the form y = ax

� an example would be Ohm's law 
onne
ting 
urrent intensity and voltage as

I = 1

R
V , where R is the resistan
e of the 
ir
uit, and using measurements of


urrent 
orresponding to various voltages to determine

1

R
). Sin
e we are for
ing
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b = 0, we now have a quadrati
 fun
tion in a, a2X2−2aXY +Y2, and it slowest

value (the quadrati
 fun
tion has a positive 
oe�
ient for a2, so its vertex is a

minimum) o

urs at

a =
2XY

2X2

=
x1y1 + x2y2 + x3y3 + x4y4

x2
1 + x2

2 + x2
3 + x2

4

To �nd a formula for a and b in the general 
ase, while we wait for additional

tools, we might a

ept, on trust, that a and b should be related by the equation

y1 + y2 + y3 + y4

4
= a

x1 + x2 + x3 + x4

4
+ b (2)

so that

b =
y1 + y2 + y3 + y4

4
− a

x1 + x2 + x3 + x4

4
=

Y1

4
− a

X1

4
(3)

For a plausibility argument why they should be 
onne
ted by the averages

of the data look at the end of this �le.

Substituting in the expression (1) results in a quadrati
 fun
tion of a only,

whose minimum we 
an again �nd using the vertex formula. The end result is

what your 
al
ulator 
omputes when asked for the regression equation:

a =
4XY −X1Y1

4X2 − (X1)
2

and b given by (3). Of 
ourse, all the o

urren
es of �4� in these formulas are

simply the size of the data set. If we had 20 points, we would get the same

formulas, but with 20 in pla
e of 4.

Why �Regression�?

The name has nothing to do with the mathemati
al tool we are using. It refers

to one of the �rst, and famous, appli
ations of the method, where the heights of


hildren were 
ompared with the heights of their parents. The data suggested

that 
hildren of tall parents tend to be taller than the mean, and 
hildren of

short parents to be shorter than the mean, but in both 
ases the deviation from

the mean tended to be less pronoun
ed, hen
e to exhibit a regression to the

mean.

Why equation (3)?

It is not unreasonable that averages are the quantities that minimize squared

dis
repan
ies. A simple motivation 
an be found in this fa
t:

Fa
t: Given data points x1, x2, . . . , xn, the number m minimizing the sum of the

squares of the di�eren
es xi −m is the average x̄ = x1+x2...+xn

n
.
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The proof is again in the vertex formula:

(x1 −m)
2
+(x2 −m)

2
+. . .+(xn −m)

2
= nm2

−2m (x1 + x2 + . . .+ xn)+x2
1+. . . x2

n

a quadrati
 fun
tion (in m), whose vertex is at

m = x̄ =
x1 + . . .+ xn

n
(4)

Another rough argument for (3)

The idea (from the statisti
s approa
h) of regression is that the yi's and xi's

should be related by

yi = axi + b+ εi (5)

, where the εi's are �errors� that average out to zero. So, taking the mean

of the two sides in (5) we would have (add all terms and divide by n), using

�sigma-notation�

1

∑

yi = a
∑

xi + nb+
∑

εi

1

n

∑

yi = a
1

n

∑

xi + b+
1

n

∑

εi

Sin
e we assumed that ε ≡
1

n

∑

εi = 0, we have the generalization of (2) to n

data points. The argument is not really a proof, sin
e the assumption of zero

error average is not really solid for a �nite number of data points (again, see a

statisti
s dis
ussion for this).

Can we address the general 
ase?

You will noti
e from (1) that, in the parti
ular 
ase whenX1 = x1+x2+x3+x4 =
0, the fun
tion 
an be seen as the sum of two separate quadrati
 fun
tions, one

of of a and one of fun
tion of b. It is intuitive (and true) that the lowest value


an be found by minimizing the two fun
tions separately. And, indeed, in this


ase, the resulting formulas are the LMS solution. Still, what if that is not the


ase? We 
an still �nd the appropriate formula if we shift the xk data by their

mean, that is working the regression line for the pairs (zk = xk − x, yk) (x is

the mean in (4)). You 
an 
he
k yourself that there will be no ab term in this

new 
oordinates, and that we 
an re
over the �true� line by shifting ba
k the

line 
omputed in terms of the zk's.

One last remark

The 
ommon way to justify the linear Least Mean Squares formula is through

di�erential 
al
ulus (you need 
al
ulus for fun
tions of two variable). However,

this problem is about a polynomial (even if in two variables), and it turns out

that what you 
an do about polynomials with 
al
ulus, you 
an do with a little

algebra and a few simple observations, without the need to bring in the heavy

artillery. You may �nd a dis
ussion of this in another 
omplementary �le.

1

the shorthand

∑

xi stands for x1 + x2 + . . .+ xn
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2 Fitting Nonlinear Data

2.1 Polynomial Fits

Finding a line of best �t, as dis
ussed above, is a 
ommon method for identi-

fying trends, even when the s
atterplot does not really suggest a linear model.

However, there are many 
ases where a linear approximation will just not be a

good summary of the data.

The book suggests to extend the Least Mean Squares Method and approx-

imate data with peaks and valleys with a polynomial. This is te
hni
ally easy

(although it requires to �nd the minimum of a fun
tion of more than two vari-

ables, and is thus de�nitely out of our toolbox), but is often not a very good

approa
h.

For one thing, the rigorous underpinning of linear regression is no longer

available. That is, least mean squares rests on a mu
h more ad-ho
 basis.

Mainly, though, the problem is that polynomials, while very important as

tools, are rarely a theoreti
ally justi�ed model, as opposed to linear fun
tions

and, 
oming up soon, exponential and logarithmi
 fun
tions. Even quadrati


fun
tions have a relatively limited s
ope: noti
e, from examples and exer
ises,

how they work for the motion of a body thrown in a gravity �eld (and then, only

ignoring air fri
tion, and only for traje
tories 
lose to earth), and for planning

re
tangular fen
es, but little else.

It is true that data exhibiting a turnaround (a maximum or a minimum) 
an

often be well approximated with a quadrati
 fun
tion, but this approximation

breaks down almost inevitably as soon as we look farther from the turnaround,

hen
e, su
h a model has almost no value for predi
tion purposes (whi
h is, after

all, the main advantage of having a model).

In fa
t, trying to �nd a polynomial that will mimi
 a number of wiggles in the

data may easily lead to over�tting, that is 
oming up with a fun
tion that 
hases

after every little perturbation in the data, masking whatever 
ore behavior may

lie behind, and failing dramati
ally as soon as the model is applied beyond the

range of the available data. After all, n data points 
an always be exa
tly �tted

with a polynomial of degree n− 1, but su
h a �t is 
ompletely useless as it will

miss any subsequent additional data, and will lead to 
ompletely unrealisti


fore
asts.

2.2 Exponential and power �ts

Many situations lead to exponential models (e.g., population dynami
s, radioa
-

tive de
ay, 
ompound interest, and more), so �tting data that should be modeled

this way is useful. On
e again, the least mean squares approa
h is 
onvenient,

but has little theoreti
al underpinning. One way is to �t data that we hope

should �t like

(

x,Aekx
)

, by �rst taking the logarithm of the se
ond 
omponent,

as in (x, lnA+ kx) that 
orresponds to a linear model. Though fairly 
ommon,

the logi
 of using an LMS approa
h is even weaker, sin
e it is not �natural� to

assume that it is the logarithm of the data that is a�e
ted by an error with
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ommon spread.

While polynomial �tting is usually 
ompletely ad-ho
, it may happen that

some probabilisti
 models will lead to power fun
tions being a good 
andidate.

These are espe
ially popular with modeling of rare events, like the time of

o

urren
e of earthquakes. This is an interesting area, but you would have to

go beyond even elementary statisti
s for an overview.


