
Review of Linear Fun
tions

1 Lines

This material is a review of familiar results. We only want to stress the following

fa
t. A line 
an be represented algebrai
ally in many equivalent ways.

1. We may look at the slope of the line, and its inter
ept with the y−axis.

We use these numbers to write the slope-inter
ept form. For example,

y =
2

3
x− 3

4
(1)

has slope

2

3
, and inter
epts the y−axis at the point

(

0,− 3

4

)

. Note that,

in this 
ontext, �slope� refers to the in
rease in the y variable, per unit

in
rease of the x variable.

2. We may look at the line with given slope, and going through a point. This

generalizes 
ase 1, where the point was the (unique) point where the line


rosses the y−axis, while now it 
an be any point. So, for instan
e, the

same line as (1) 
an be represented by

(

y − 1

4

)

=
2

3

(

x− 3

2

)

(2)


alled point-slope form (slope is still

2

3
, and now we refer to the point

(

3

2
, 1

4

)

,

whi
h also belongs to the line � note that, subtra
ting − 1

4
from both sides

of (2), and opening the parenthesis, we revert to (1).

3. With a little algebra, we 
an write an equation for the same line that puts

the two variables on equal footing (they are treated di�erently in the �rst

two forms). Indeed, we 
an rewrite (1) in su

essive steps as

y − 2

3
x = −3

4
(3)

3y − 2x = −9

4
(4)

12y − 8x = −9 (5)

Please, note that all three equations all represent the same line as (1),

and (2). The book 
alls (5) standard form. Another standard form for the

same line 
ould be

24y − 16x = −18 (6)

and so on.
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4. Another �symmetri
� form for a line (one that is not mentioned as su
h in

the book) is the form spe
i�ed by two points through whi
h the line has

to go. If the points are (x1, y1), and (x2, y2), an equation 
an be written

as

y − y1

y2 − y1
=

x− x1

x2 − x1

(7)

(pay attention to the order in whi
h the 
oordinates are used). For exam-

ple, our friendly line 
an be also spe
i�ed by the fa
t that it goes through

(

0,− 3

4

)

, and

(

3

2
, 1
4

)

, giving

y + 3

4

1

4
+ 3

4

=
x
3

2

(8)

With minimal algebra, form (8) 
an be turned into any of the others, of


ourse.

5. Finally, it is obvious that there are also in�nitely many ways to 
hoose our

points and write an equation in a form like (7). Note also, that, given the

denominators in (7), this is not a way to handle lines of the form x = c, or

y = c (i.e., verti
al or horizontal lines), sin
e one of the two denominators

would be then zero.

Short Observations

There are a few things to note for ea
h form.

1. Slope-inter
ept form (1) expli
itly shows two spe
i�
 
hara
teristi
s of

the line. Two di�erent lines will di�er in at least one of them, so there

is only one slope-inter
ept form for a line. There are lines that 
annot be

represented in slope-inter
ept form: lines of the form x = c, where c is

some number, have no slope, and they 
oin
ide with the y−axis, if c = 0,
and never inter
ept it if c 6= 0.

2. A given line 
an be represented in many ways in point-slope form: the

slope is a �xed number, but the point 
an be any of the in�nitely many

points on the line. For example, instead of

(

3

2
, 1

4

)

, or

(

0,− 3

4

)

, we 
ould,

just as well, use

(

9

8
, 0
)

, or

(

1,− 1

12

)

, and so on. Again, lines with no slope,

i.e., lines like x = c (verti
al lines), 
annot be represented this way.

3. Note that in the standard form Ax+By = C none of the 
onstants in any

of the forms need to be an integer, or even a rational number (a fra
tion)

for the equation to represent a line. For example,

√
2y − πx = 1

is a perfe
tly legitimate line. Please, note also that any line 
an be rep-

resented in standard form. On the other hand, as illustrated in equations

(3) - (6), there are in�nitely many standard forms for a given line.
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Appli
ation

Here's an appli
ation we'll meet in some word problems: a business has to set

the pri
e of a produ
t, and it will sell more of it, the lower the pri
e - let's

model the relation between pri
e and sales. For simpli
ity, we will assume that

the relation is linear. That is, if s is the sales number, and p is the pri
e, the

pairs (p, s) in the plane lie on a line. Depending on what data we are starting

from, we may use any of the forms to spe
ify the line.

1. If we are told, e.g., that for every dollar we raise the pri
e, we will sell

10 less items, and that if we just gave the stu� away for free, we would

�sell� (so to speak) 1,000 if them, then we know that the slope of the line

is −10, and that the s−inter
ept (i.e., the y−inter
ept in our dis
ussion

above, 
orresponding to p = 0) is at (0, 1000). Hen
e, the equation is

s = −10p+ 1000

2. On the other hand, if we are told the slope, as before, but also that a pri
e

of $50 will produ
e 500 sales, we would write

s− 500 = −10 (p− 50)

3. We might want to represent the relation in a more symmetri
 form, sin
e

we might, hypotheti
ally, want to set a sales goal, and set the pri
e a
-


ordingly, as well as going the reverse route. Hen
e, we 
ould write our

line in the form

s+ 10p = 1000

and, if we had the goal of writing pri
e as a fun
tion of sales, �solve for p�,

and end up with

p = 100− s

10

or any of the possible variations.

4. Finally, if told that, for example, we would give away 1,000 items if we

gave them away, but would stop selling any at all, on
e we raised the pri
e

to $100, we would know that our line goes through the points (0, 1000),
and (100, 0), and 
an then be written as

s− 1000

0− 1000
=

p− 0

100− 0
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2 Linear Fun
tions

These are the ones appearing in what is 
alled the �slope-inter
ept� form for the

equation of a line. All have the form

f (x) = ax+ b

where a and b 
an be any real number. This ex
ludes verti
al lines, whi
h, as

you may observe, are not fun
tions.

Linear fun
tions are the polynomials of degree one. Like all polynomials,

the domain of all linear fun
tions is (−∞,∞), that is �all real numbers�, or R

(all equivalent notations/expressions).

Useful fa
ts you may want to keep in mind are

1. f is in
reasing if a > 0, is 
onstant if a = 0, is de
reasing if a < 0

2. The average rate of 
hange is a - it's not average at all, in that it is


onstant, and always the same, no matter whi
h two points you 
hoose

for its evaluation: it is the rate of 
hange of f .

3. A non 
onstant linear fun
tion always has exa
tly one zero. Try to make a


omplete argument for this statement. Clearly a 
onstant fun
tion (whi
h

is automati
ally linear, a = 0) has either no zeros at all (if b 6= 0), or all
the domain 
onsists of zeros (if b = 0).

3 Some Additional Comments

Any fun
tion that is not linear is 
alled nonlinear. We have been already working

with polynomials, whi
h are nonlinear, as long as their degree is greater than 1.

Noti
e, that, when x is very 
lose to 0, i.e. for |x| small enough, the graph of a

nonlinear polynomial f(x) will be very 
lose to the graph of the linear fun
tion

you obtain if you ignore all terms of degree higher than one. This linear fun
tion

is 
alled the tangent to the graph at the point (0, f(0)). By 
lever horizontal

shifting, we 
an �nd the tangent to the graph of a polynomial at any point

(x, f (x)). There is a more detailed dis
ussion in another additional material

�le.

A standard use of the existen
e of a tangent at a point (whi
h 
an be suit-

ably extended to a mu
h wider 
lass of fun
tions, besides polynomials) is to

approximate the �true� fun
tion with a linear one. That's how many of the

linear models we en
ounter in s
ien
e originate.
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3.1 Example: Hooke's Law and Ohm's Law

If we take a spring (or any elasti
 material) that has length l when it is neither

pushed nor pulled, if we apply a for
e F pulling or pushing the spring, the new

length will be of the form

L = l + kF

where k is a 
onstant depending on the material, and the geometry of the spring,

and F is positive if it is pulling the spring. We have here L a linear fun
tion of

F

This 
an be viewed as an experimental law, or argued theoreti
ally by as-

suming that the (unknown) �true� law L = f (F ) is of polynomial type (or that

it is as a more general fun
tion, that still has a tangent line at L = l, F = 0).
The same logi
 explains Ohm's Law in ele
tri
ity, where the intensity of a


urrent I through a 
ir
uit is a fun
tion of the voltage V applied to the 
ir
uit

a

ording to the fun
tion

I =
1

R
V

(when V = 0, there's no 
urrent, and so I = 0). The slope

1

R
is 
alled the


ondu
tan
e of the 
ir
uit, and its re
ipro
al, R, is 
alled the resistan
e of the


ir
uit.

4 Interpolating Linear Fun
tions To Empiri
al Data

This topi
 is one of the most 
ommon appli
ations of statisti
s (the method a
tually 
an be

used to interpolate many other types of fun
tions, but the linear 
ase is the most 
ommon).

Suppose you have a s
atterplot and wish to write an equation for the line that �best approx-

imates� the plot. Noti
e that we need a de�nition of �best approximation� here. Also, the

plot need not look like it is 
lustering around a straight line for the method to work! In fa
t,

sometimes linear approximations are made to data that looks very nonlinear. As in all things,

it all depends on what you are doing this for.

The standard 
hoi
e for �best approximation� (whi
h 
an be justi�ed in di�erent ways,

but, of 
ourse, still has some arbitrariness in it), is to 
hoose the line ax+ b su
h that, if the

points in the s
atterplot are listed as (xi, ni) ; i = 1, 2, . . . n assures that the di�eren
e

(y1 − (ax1 + b))2 + (y2 − (ax2 + b))2 + . . .+ (yn − (axn + b))2

is as small as possible. Sin
e we are trying to get to the smallest value of a sum of squares,

this is 
alled the Least Mean Square 
riterion. Sin
e we need to 
hoose two values, a and b,

this requires handling two di�erent variables and �nd the 
ouple that 
auses this expression

to be as small as possible. We would need to work a bit more than we are expe
ted to in

this quarter in order to �nd the solutions to this problem, but let us just say that it is not

hard (given the appropriate tools) to see that there is exa
tly one best 
hoi
e for these two

numbers, and this is what your 
al
ulator (if it has this fun
tion pre-programmed) will tell

you if you ask it to give you the �best �t�. If you are still 
urious, you 
an 
he
k the �le on

Least Mean Squares.

Of 
ourse, you 
an always pi
k two points among the data and draw the line between

the two. If you were 
areful enough, the line might be a reasonable �best �t� - but only in

an intuitive sense: somebody else's 
hoi
e will more than likely be di�erent. As long as you

are only looking for a rough idea, this is OK. You would not use this eyeballing method in a

rigorous 
ontext, though.


