tan t = |
sin t cos t |
cot t = | 1 tan t | = | cos t sin t | |
sec t = | 1 cos t |
csc t = | 1 sin t |
sin2 t + cos2 t = 1
cos t = sin(/2 t)
sin t = cos(
/2 t)
cot t = tan(/2 t)
tan t = cot(
/2 t)
csc t = sec(/2 t)
sec t = csc(
/2 t)
sin (t + 2) = sin t
cos (t + 2) = cos t
tan (t + ) = tan t
sin t = sin t
cos t = cos t
tan t = tan t
sin (s + t) = sin s cos t + cos s sin t
cos (s + t) = cos s cos t sin s sin t
sin 2t = 2 sin t cos t
cos 2t = cos2 t sin2 t = 2 cos2 t 1 = 1 2 sin2 t
sec2 t = 1 + tan2 t
sin( t) = sin t
cos( t) = cos t
tan( t) = tan t
sin (s t) = sin s cos t cos s sin t
cos (s t) = cos s cos t + sin s sin t
tan (s + t) = | tan s + tan t 1 tan s tan t |
tan (s t) = | tan s tan t 1 + tan s tan t |
tan 2t = | 2 tan t 1 tan2 t |
sin t/2 = ±((1 cos t) / 2)
cos t/2 = ±((1 + cos t) / 2)
tan t/2 = | sin t 1 + cos t |
= | 1 cos t sin t |
sin s + sin t = | 2 sin | s + t 2 | cos | s t 2 | |
sin s sin t = | 2 cos | s + t 2 | sin | s t 2 | |
cos s + cos t = | 2 cos | s + t 2 | cos | s t 2 | |
cos s cos t = | 2 sin | s + t 2 | sin | s t 2 |
|
Aside: weirdly enough, these product identities were used before logarithms to perform multiplication. Here's how you could use the second one. If you want to multiply x times y, use a table to look up the angle s whose cosine is x and the angle t whose cosine is y. Look up the cosines of the sum s + t, and the difference s t. Average those two cosines. You get the product xy! Three table look-ups, and computing a sum, a difference, and an average rather than one multiplication. Tycho Brahe (1546-1601), among others, used this algorithm known as prosthaphaeresis. |
sin 3t = 3 sin t 4 sin3 t
cos 3t = 4 cos3 t 3 cos t
tan 3t = | 3 tan t tan3t 1 3 tan2t |
sin t = | 2 tan t/2 1 + tan2 t/2 |
cos t = | 1 tan2 t/2 1 + tan2 t/2 |
tan t = | 2 tan t/2 1 tan2 t/2 |
David E. Joyce
Department of Mathematics and Computer Science
Clark University
Worcester, MA 01610
Dave's Short Trig Course is located at http://www.clarku.edu/~djoyce/trig