
Derivatives

Part I. Prealulus

1 Funtions

The de�nition of �funtion� is very �weak�. Sine any rule mapping an input

to an output is a funtion, there are very strange examples out there. Some

sophistiated triks are needed to produe the really weird ones, but a simple

example (and it's not really pathologial) is

f(x) =

{

1 if x is irrational

0 if x is rational

It's essentially meaningless to draw the graph of f .

In pratie, we want our funtions to have a little more struture than just

being �funtions�, so we an do meaningful work with them. From one side,

we study spei� expliitly given funtions that allow more or less easy ma-

nipulation (polynomials, exponential and logarithmi funtions, trigonometri

funtions, and so on). From the other, we try to identify features that would

allow us to work pro�tably with more general funtions. Fat of the matter is

that many funtions in real appliations arise as solutions to problems where

we an dedue many properties of the solution, but not a really expliit for-

mula. Even when a formula is available, though, exept for very simple ases,

we annot say muh about the funtion right away. Here is where �di�erential

alulus� enters the piture.

Sine polynomials are reasonably simple to study (at least if the degree is not

too high), the �rst goal we aim at is to de�ne lasses of funtions that behave

�almost like� a polynomial, allowing us to get information on their behavior by

�nding polynomials of low degree that behave (at least over a small range) very

muh like them.

2 Irrational Numbers

Impliit in the disussion above is that in almost all ases, we don't have the

possibility of providing an expliit exat answer to our questions, but that we

will make do with suitable approximate answers, whih, for the most part, will

be more than adequate.
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We already should know that this is the ase � and this awareness dates bak

to anient Greee. In fat, onsider the simple geometri problem of �nding the

length of the diagonal of a square whose side is of length 1. The Pythagorean

Theorem tells us that the diagonal has length

√
2. But

√
2 is only a symbol:

how many inhes is that? If there was a fration whose square equals 2 the

answer would be straightforward, but there is no suh fration

Proof : suppose

p2

q2
= 2, where p and q are integers. Suppose we

have already redued the fration

p
q
to lowest terms, so that p and q

have no ommon fators (exept the trivial fator 1). Sine we have
p2 = 2q2, p2 is even, and so, neessarily, will be p. Hene p = 2k for

some k. Hene, p2 = 4k2, and

q2 =
p2

2
=

4k2

2
= 2k2

But this means that q2, and hene q, is even too. Now, p and q

would have 2 as a ommon fator, whih we had exluded. Hene,

there are no suh p and q.

It is easy to transfer the proof to roots of any order, of any

integer, that are not exat roots. In other words, for any integer m,

and any n, either n

√
m is an integer, or it is irrational (annot be

expressed as a fration).

Of ourse, we are also familiar with the elebrated example of π, the ratio of the

irumferene to the diameter of a irle. Approximate methods to determine

π have been known at least sine the time of Arhimedes, but it is a deep result

from the 18th Century that π is irrational.

So, what is the length of the diagonal of our square? We annot give an

absolutely exat number of inhes, but, then, we don't really need to. In fat, we

an approximate

√
2 as muh as we wish. For example, stating that

√
2 ≈ 1.4142

means that the rational number 1.4142 is suh that 1.41422 < 2, but 1.41432 > 2.
So, using this value, for a side of 1 inh, we an approximate the diagonal up to

1/10,000th of an inh. That is probably enough for most ases, but if it wasn't,

we an push the approximation further. For example,

√
2 ≈ 1.414213562 and

we are down to the billionth of an inh, and we ould go on, if we wanted to.

Sine any instrument we might use will have a �nite preision, even if this ould

be a fabulously great one, we won't be limited by our inability to pin down

√
2

exatly.

One way of thinking of this elusive number is then as the �limiting number�

towards whih the sequene of approximations

1.4, 1.41, 1.414, 1.4142, 1.41421, . . . (1)

is tending, without ever reahing it � but getting loser and loser, in fat, as

lose as we wish, provided we have the patiene to proeed far enough.

In formal, mathematial terms, this is expressed by onsidering the sues-

sive numbers in (1), let's all them a1 = 1.4, a2 = 1.41, . . ., and stating that,
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for any value ε that we may hoose (for example, ε = 10−5
), we an push our

alulation so far that we will reah an n, suh that from that point on (�for

any m ≥ n),
∣

∣

∣
am −

√
2
∣

∣

∣
< ε

For example, from the values listed above, we see that a5 = 1.41421, and, indeed,

∣

∣

∣
1.41421−

√
2
∣

∣

∣
< 10−5

�for any m ≥ 5,
∣

∣am −
√
2
∣

∣ < 10−5
�.

Most mathematial results are very similar to this: rather than expressing

exat equalities, they will allow for preise ontrol of our approximations. The

foremost tool for this is di�erential alulus.

3 Studying Polynomials

Even though polynomials are very simple funtions (for example, given an exat

value for x, we an ompute the exat orresponding value of the polynomial

via simple produts and sums

1

), it is not instantaneous to �gure out how the

graph will look like near a given value of x, as soon as the degree is not low.

We an however �nd out using a simple trik.

3.1 A Polynomial Near x = 0

This fat is well known: for a number a, suh that |a| < 1, the higher the power
an, the smaller its absolute value. This feature aentuates the loser a is to

0. For example, if a = 10−1
, an = 10−n

, and if a = 10−3
, an = 10−3n

. Hene,

if x is lose to 0, eah of its suessive powers beomes quikly negligible. So,

if |x| is su�iently small, x2
will be �invisible� when ompared to x. Hene, a

polynomial like

p(x) = 7x10 − 4x9 + 3x8 − 2x7 + x6 + 6x5 − 9x4 + 12x3 − 5x2 + 3x+ 1

1

So, for p(x) = −3x5+2x4
−

x
3

3
+ 2

3
x
2+5x−1, p(2) = −3 ·25+2 ·24− 2

3

3
+ 2

3
·22+5 ·2−1
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we an say

• p(0) = 1 (that's easy)

• If |x| is really lose to 0, p(x) ≈ 1 + 3x. This means that the graph of p

will look almost like the graph of the straight line 1 + 3x. Geometrially,

this means that the tangent line to the graph at x = 0 has slope 3, and the

graph rosses the y axis going from below 1 to above 1 � it is inreasing

near x = 0, and it has approximate slope 3

• If |x| is very lose to 0, p(x) ≈ 1+ 3x− 5x2
. This means that it will look,

near 0, muh like the parabola y = −5x2+3x+1. This is easily seen to be

a parabola with a graph that is open down, and a vertex at some x > 0.
In other words, the graph is inreasing near x = 0, but it is doing so at a

slowing rate, just like the graph of our approximating parabola.
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This an be pushed further, but you get the idea. An even more interesting

ase is when there is no linear term. For example, if q(x) = 4x4− 3x3− 2x2+1,

we still have q(0) = 1, but now the �rst interesting observation we an make

is that, for |x| lose enough to 0, q(x) ≈ 1−2x2
. This is a parabola, open down,

with vertex at (0, 1). This is a maximum point for the parabola, and this allows

us to say that this is also a maximum for our polynomial.
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3.2 Polynomials At Any x

What if we want to learn about our polynomial near a non zero value of x? The

argument above does not work, of ourse. However, we an take advantage of a

trik we learned in Algebra and Prealulus: we an shift our graph horizontally

so that the value we are interested in gets shifted to 0!
As a very simple example, think of the question �how does the tangent line

to f(x) = x2

3 + 2x − 1 at x = 3 look like?�. By the argument above, we know

that the tangent line at x = 0 is y = 2x− 1, but what about x = 3? Well let's

shift our urve to the right by 3 units: this way x = 3 beomes x = 0. As we

know this is performed by substituting x+ 3 in plae of x:

f(x+ 3) =
(x+ 3)

2

3
+ 2 · (x+ 3)− 1 =

x2

3
+ 4x+ 8

The tangent at x = 0 of this funtion is the same as the one at x = 3 of our

original one,



4 How To Go Beyond Polynomials? 7

sine we simply shifted it sideways: it will be a line with slope 4, going
through the point (3, 8): that's y − 8 = 4 (x− 3) ⇒ y = 4x− 4

4 How To Go Beyond Polynomials?

All the above is pure Algebra. But how ould we extend this idea to funtions

like ex, or tanx, or even more ompliated ones? Well, that was solved by the

genius of Newton and Leibniz, bak in the 17th Century, and is the topi of

most of our lass. In fat, one way to look at derivatives is as oe�ients of

polynomials that are �lose� to our funtion.

Part II. Calulus

5 Notations for derivatives of a funtion

The most ommon notations for the derivative of a funtion f are

• f ′

• Df onvenient: allows for, say, D x2

sin x
, possibly more onvenient than

(

x2

sin x

)

′

• df
dx

very ommon, somewhat misleading (derivatives are not quotients),

but hugely onvenient. It an be made rigorous in two ways (at least).

One is exoti, and we will not address that (there are good texts available

on the web for that). The other is obtained by de�ning the �di�erential�

of a funtion at a point a as the linear approximation;

f(x) = f(a) + df(a) + small error (2)
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so that

df(a) = f ′(a) (x− a) (3)

and, of ourse, it follows that

dx = x− a

so that

df(a)

dx
=

f ′(a)(x − a)

x− a
= f ′(a)

Note: the �small error� in (2) is �small� in the following preise sense:

f (x) − f (a) = f ′ (a) (x− a) + ε

where, as x → a, ε
x−a

→ 0 (�ε goes to zero faster than x − a�). As we'll

see next, (2) and (3) provide an alternate, very useful, de�nition of ��rst

derivative�.

6 Polynomials and �Taylor's Formula�

We already had a method to �nd the slope of the tangent at a point for a

polynomial. Let's see how it is the same as taking the �rst derivative on an

example.

Suppose you have

p(x) = 2x3 − 3x2 + x− 1

and want the slope of the tangent at x = −1. You may ompute

p′(−1) = 6 · (−1)2 − 6 · (−1) + 1 = 13

or you ould

1. Shift the graph to the right by 1, and hek the new linear term:

2 (x− 1)
3 − 3 (x− 1)

2
+ (x− 1)− 1 = 6x+ 6x+ x+ . . . = 13x+ . . .

2. Or (even better), we ould rewrite the polynomial in powers of x + 1 =
x− (−1), by substituting x = (x+ 1)− 1:

2 ((x+ 1)− 1)3 − 3 ((x+ 1)− 1)2 + ((x+ 1)− 1)− 1 =

2
(

(x+ 1)3 − 3 (x+ 1)2 + 3 (x+ 1)− 1
)

−3
(

(x+ 1)2 − 2 (x+ 1)− 1
)

+(x+ 1) =

2 (x+ 1)
3 − 9 (x+ 1)

2
+ 13 (x+ 1) + 2

and, expanding the powers, the term linear in x + 1 has, indeed, 13 as

oe�ient.

This points to an alternate de�nition of derivative, that has long range impli-

ations:
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1. First derivative of f at a: a number α, suh that

f(x)− f(a) = α (x− a) + ε (4)

where ε is small, in the sense we have mentioned: it gets smaller as x → a

faster than x− a � for example this works if ε ≈ k (x− a)
2
, as is the ase

for polynomials.

2. Seond derivative at a is (assuming we found α above) a number β suh

that

f(x)− f(a) = α (x− a) +
β

2
(x− a)2 + δ (5)

where δ is small in a similar sense: it gets smaller faster than (x−a)2. The
1
2 fator has to do with reoniling with the �usual� de�nition of seond

derivative.

3. You an imagine how it proeeds from here. The only issue is the extra

fator whih, for the nth derivative turns out to be

1
n!

Remark: We an see that polynomials have derivatives of all orders (by the way,

if the degree is n, all derivatives from the n + 1-th on are zero). On the

other hand, �most� funtions don't have any derivative at all, in that their

graphs do not have tangents. However, all �elementary� funtions (those

that we know by name) also have derivatives of all orders, exept where

they are not ontinuous, or at otherwise exeptional points (e.g., |x| has
no derivative at x = 0).

7 Review of Important Theorems

7.1 Produt and Quotient Rule

It's easy to prove both:

f(x+ h)g(x+ h)− f(x)g(x)

h
=

f(x+ h)g(x+ h)− f(x+ h)g(x)

h
+

+
f(x+ h)g(x)− f(x)g(x)

h
→ f ′ (x) g (x) + f (x) g′ (x)

We �rst hek the rule for the derivative of the reiproal,

1
f(x+h) − 1

f(x)

h
=

f(x)− f(x+ h)

hf(x+ h)f(x)
→ − f ′ (x)

f2 (x)

Hene,

d

dx

(

f (x)

g (x)

)

=
f ′(x)

g(x)
− f(x)

g′(x)

g2(x)
=

f ′ (x) g (x)− f (x) g′ (x)

g2 (x)
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7.2 Chain Rule

Also easy: let's use the alternate de�nition of derivative:

f (g (x+ h))− f (g (x)) =
d

dx
f (g (x))h+ ε

but

f (g (x+ h)) = f (g (x) + g′ (x)h+ ε′) = f (g (x)) + f ′ (g (x)) (g′ (x) h+ ε′) + ε”

Negleting all the ε's, we have that

d

dx
f (g (x)) h = f ′ (g (x)) g′ (x)h

that is, the hain rule.

Note also how, if f (x) = ax + b, g(x) = cx + d, f (g (x)) = ag(x) + b =
acx + ad + b, so the linear part is indeed the produt. Sine di�erentials are

the linear approximation to funtions, the hain rule says that the di�erential

of the omposition of two funtions is the omposition of the di�erentials! This

simple observation will expand to provide better insight when you move on to

more advaned alulus, as in managing several funtions of several variables at

one.

8 Derivatives of Transendental Funtions

8.1 Exponentials

Let f(x) = ex. We have that

ex+h − ex

h
= ex

eh − 1

h
= exf ′(0)

Now, the book de�nes e as that number suh that f ′(0) = 1. On the other

hand, if we think of e = limn→∞

(

1 + 1
n

)n
, we an produe an intuitive reason

why Dex is 1 for x = 0: think of the linear interpolation

2

at x = 0 for very large

n, as the initial slope is indeed 1:

(

1 +
x

n

)n

= 1+n·x
n
+
n(n− 1)

2
·x

2

n2
+. . . = 1+x+

n2 − n

n2
·x

2

2
+. . . ≈ 1+x+

x2

2
+. . .

as n → ∞. Inidentally, referring to our previous disussion of seond derivatives

(formula (5)), the seond derivative of ex at x = 0 is equal to 1 as well (and so

are all the others).

Then, sine for any a > 0, a = elna
, ax = ex ln a

, and

dax

dx
= ax ln a (6)

You an see how muh more onvenient base e is, ompared to any other base.

2

This omment refers to the intuitive disussion of how the number e appears as a limiting

ase for things like interest ompounded ontinuously, or population growth.
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9 Derivation of Inverse Funtions (Appliation to

Logarithms)

From the hain rule and f
(

f−1 (x)
)

= x, we have

d

dx
f
(

f−1 (x)
)

= f ′
(

f−1 (x)
) df−1

dx
= 1

df−1(x)

dx
=

1

f ′ (f−1 (x))
(7)

Now, let f(x) = ex, f−1 (x) = ln x. Hene,

d lnx

dx
=

1

eln x
=

1

x

Sine, for any a > 0, a 6= 1, loga x = ln x
ln a

, we have

d loga x

dx
=

1

x ln a
(8)

Equations (6) and (8) show why it makes little sense to onsider any base

di�erent from e whenever we are doing alulus � whih is what we do in almost

any sienti� appliation involving exponential or logarithmi funtions.

Remark: From (7) we see that for the inverse funtion of f to be di�erentiable,

we need f ′
(

f−1 (x)
)

6= 0. We'll soon see that this ondition is not only

neessary, but also su�ient, in the sense that if a funtion has ontinuous

derivative and f ′ (a) 6= 0, then we an de�ne an inverse funtion (that

turns out to be also di�erentiable) f−1
with a domain ontaining at least

a small interval around a.

10 Trigonometri Funtions

Let's reall:

sin (x+ h)− sinx

h
=

sinx cosh+ cosx sinh− sinx

h
=

sinx (cosh− 1)

h
+ cosx

sinh

h

Now, we know that

lim
x→0

cosh− 1

h
= 0 (9)

(see the remark at the end of this setion), while

lim
x→0

sinx

x
= 1
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Hene,

D sinx = cosx

Similarly,

cos(x+ h)− cosx

h
=

cosx cosh− sinx sinh− cosx

h
=

= cosx
cosh− 1

h
− sinx

sinh

h
→ − sinx

just as before. To �nd the derivative of the tangent, we may use the quotient

rule:

D
sinx

cosx
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x

Remark: Here is a proof of (9):

cos2 x− 1

x2
=

cos2 x− cos2 x− sin2 x

x2
= − sin2 x

x2
→ −1

as x → 0. Hene,

(cosx− 1) (cosx+ 1)

x2
= (cosx+ 1)

cosx− 1

x2
→ −1

and sine cosx+ 1 → 2
cosx− 1

x2
→ −1

2

Besides showing that cosx ≈ 1− x2

2 for small x (a very interesting fat in

itself), this also proves that

cosx− 1

x
= x · cosx− 1

x2
→ 0 ·

(

−1

2

)

= 0

11 Impliit Derivatives

There is a huge hidden fat behind this result. Super�ially, this is simply an

appliation of the hain rule, with lots of assumptions. The simple ase is

f(x) + g(y) = c

so that (assuming g is invertible)

y = g−1 (c− f (x)) (10)

Now, ombining the hain rule and the inverse funtion rule, we an ompute

dy
dx
. However, there is a faster way. Sine we know from (10) that we may

onsider y as a funtion of x, we may write the identity

f (x) + g (y (x)) = c
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for all x, and deriving this, we get (hain rule)

f ′ (x) + g′ (y (x)) y′ (x) = 0

y′ (x) = − f ′ (x)

g′ (y (x))

This is a speial ase of a muh more interesting result. We have to agree

to think of �partial derivatives�. That's when f(x, y) is derived with respet to

x, respetively y, by keeping the other variable onstant. Notations are

• f ′

x, f
′

y

• Dxf,Dyf

• ∂f
∂x

, ∂f
∂y

For tehnial reasons, we need to assume that these derivatives are ontinuous

funtions. In this ase, it goes like this:

Given a funtion f (x, y), and a (non empty) set de�ned by

f (x, y) = c, where c is a onstant, suppose that there is a funtion

y = g (x), suh that f (x, g (x)) = c, then, via the hain rule,

∂f (x, g (x))

∂x
+

∂f (x, g (x))

∂y
· dg (x)

dx
= 0 (11)

dg (x)

dx
= −

∂f(x,g(x))
∂x

∂f(x,g(x))
∂y

(12)

Here's a quik idea for proof of (11):

f (x+ h, g (x+ h))− f (x, g (x))

h
=

f − f (x, g(x+ h)) + f (x, g(x + h))− f (x, g (x))

h

and the rest proeeds just as for the proof of the hain rule.

The beauty of this result is that if (12) makes sense, then the reverse is

true! That is, if

∂f
∂y

is ontinuous near a point (x̄, ȳ), suh that f (x̄, ȳ) = c,

and

∂f
∂y

6= 0 is ontinuous at (x̄, ȳ) (in a sense that needs to made preise), then

there is a funtion de�ned at least for x lose to x̄, suh that

f (x, g (x)) = c

for all x for whih g is de�ned (this is known as the Impliit Funtion Theorem,

a basi result in multivariate alulus). Though it may not be obvious, this

theorem (for funtions of more than one variable) is stritly germane to the the

result we mentioned in setion 9, whih is the one-dimensional version of the

so-alled Inverse Funtion Theorem.


