Combining Functions

We may think of a function as a sort of "meat-grinder" that takes in an input (a value for the "independent variable", grinds it in various ways, and spits out an output (the corresponding value for the "dependent variable"):

To help us work with f, we may want to break its action down into smaller pieces - after all, we do that all the time, when trying to grasp a complex item, analyzing it into components... Thus, it pays, sometimes, to think of a function f as the result of combinations involving simpler functions.

Examples are mentioned in the assignment sheet: we may take two functions, and combine them via arithmetic operations:

$$
\begin{aligned}
& g(x)=1+x, h(x)=x^{2} \\
& f_{1}(x)=g(x)+h(x)=1+x+x^{2} \quad f_{2}(x)=g(x) \cdot h(x)=(1+x) \cdot x^{2} \quad f_{3}(x)=\frac{h(x)}{g(x)}=\frac{x^{2}}{1+x}
\end{aligned}
$$

and so on...
A slightly more complicated combination is when we decompose f into a "series" arrangement, where one function, say h, takes, as input, the output of the other:

Here, we think of f as working like this: take x; feed it into g; take the output, $\mathrm{g}(x)$, and feed it into h, calling the result, $h(g(x)), f(x)$. With the functions above, we would have:

$$
\begin{gathered}
g(x)=1+x \quad h(x)=x^{2} \\
f(x)=h(g(x))=g(x)^{2}=(1+x)^{2}
\end{gathered}
$$

The combination of functions in this way, is called "composition", and it turns out to be a useful approach when trying to work with more complicated functions: after all, the great advances of science have all been based on the ability to reduce complex phenomena to a combination of simpler ones! A notation you will often see, for this way of combining g and h is

$$
f(x)=h(g(x))=h \circ g(x)
$$

The small circle stands for "composed with", according to the method indicated above.

