
Compound Interest

1 Review Of Compound Interest

Ignoring the “marvelous” workings of compounding interest cost dearly to the
landed gentry of Virginia in the 18th Century, when they saw their debts to
British and New York creditors balloon beyond their understanding. Some
contemporary credit card holders may understand the feeling. The principle
is much older, and its development in the Renaissance contributed to many
financial problems for debtors ever since, and also to fascinating developments
in mathematics.

Let’s recap the facts. Suppose you have an investment of C dollars, and
you are earning an interest rate of r. For example, $1000 at 5%. With simple
interest, your money grows linearly: after t years (where t is any real number -
fractions of a year are perfectly meaningful), you have

C + Crt = C (1 + rt) (1)

This is a linear function with slope Cr.
Now, compound interest means that, after a set amount of time (usually

no more than year, possibly much less), all interest earned up to that point is
absorbed in the “principal”: from this time on, interest will be computed not on
the original investment C, but on C+all interest earned to that point. Suppose
this happens after 1/n-th of a year (n = 1, after a year;n = 2, after 6 months,
n = 12, after one month, and so on). The same scenario is repeated after the
next 1/n-th of a year, and on and on.

This rule produces a much faster growth of your money. Let’s see how so,
working the formulas.

After the first compounding period, t = 1

n
, and we have, from (1), a total

amount of
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For the next 1/n-th of the year, we will earn interest on this amount. Hence for
t between 1

n
, and 2

n
, our money will be
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(interst is earned starting at t = 1

n
, hence the strange t−

1

n
term). At the next

compounding time, 2

n
, i.e. 1

n
from the first, we will have
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You may see an emerging pattern, because now we have to repeat the same
argument again, starting from t = 2

n
. After k compounding periods, we will end

up with a total wealth of

C

(

1 +
r

n

)k

(2)

Since each compounding period is 1

n
long, k compounding periods correspond

to a total time t = k

n
, so that, for values of t that are multiples of 1

n
, formula

(2) means that your wealth will be

C

(

1 +
r

n

)nt

(3)

Notice that this formula is exact only for times t that are integer multiples

of the compounding period! Between such times, your wealth will be grow-
ing linearly, starting from your accumulated wealth at the last compounding
period1.

It is clear that, the higher the value of n (the shorter the compounding
period), the faster your wealth will grow. You may, if you wish, play a bit with
your calculator, and get a feeling for the effect that changing the value of n has.

2 Continuous Compounding

The following question arose when banking arose as a legitimate (and very
profitable) activity in the early Renaissance: since, clearly, as n increases, your
yield will grow, how far can you push this? Maybe, by increasing n, we could
push increase our profit indefinitely? This is not a vey simple question to answer,
but it turns out that the answer is no.

This is a fact that you might want to “check” on a calculator, but its proof
requires some serious beginning calculus:

As n increases, the expression
(

1 +
r

n

)n

increase, but always stays (well) below 3. As a metter of fact, there is
an irrational number, which we will call e (in honor of the Swiss 18th
Century mathematician Leonard Euler, one of the most brilliant
mathematicians of all time), such that

(

1 + r

n

)n
will be as close to

er as we wish, provided we choose a large enough value for n.

Using this fact, we note that (3) can be written as

C

[(

1 +
r

n

)n]t

1 Algebra textbooks tend to forget to stress this point. On the other hand, since we are not

in an Accounting, course, this is not a terrible mistake. However, if we keep this fine detail in

mind, we can learn something very interesting about the function e
rt - see the discussion in

the companion file on the number e.
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and it is only reasonable (again, there’s some serious math to employ to make
the argument air-tight) to decide that this, for large enough n, should be almost
equal to

Ce
rt (4)

Such a compounding schedule is called “continuous compounding”.
Once somebody is nice enough to program our calculator or computer with

the function e
x, formula (4) is much more convenient than (3) for calculations.

But, wait, there’s more: this formula holds for any t, not only for special values,
like the multiples of some fixed number. Hence, we have a legitimate exponential
funciton to work with, not a complicated function, linear over short intevals,
with exponential increases of the slope at each compounding period.

While (4) is not really used by your bank, it is so much more convenient
that it is the standard model for interest-driven growth in all financial studies.


