
Asymptotes

Rational functions may display a new behavior. A linear function, as we
know, is defined for all values of the variable, and increase without bound on
one end, decreasing without bound on the other, unless it is a constant. We will
soon see that quadratic functions increase or decrease without bound on both
ends. In fact, it can be shown that all polynomials are defined for any value
of the variable, and, as x becomes larger and larger or smaller (in the sense of
more and more negative), they grow or decrease without bound.

Rational functions may behave similarly, but they often do not. There are
two issues: they may not be defined everywhere, and, as x grows, or decreases
without bound they may well tend to stabilize close to a value, rather than
grow or decrease without bound. Near values where the function is undefined,
its absolute value grows without bound (making it very tricky to evaluate with
a calculator: calculator are not very good at handling numbers whose absolute
value is very large or very small).

All of this is sometimes tricky to discover using a graphing calculator - all
sorts of fake artifacts may appear (the book hints at the most egregious one
on page 407). This is another example where knowing how to handle things
algebraically (and with common sense) beats blind reliance on a machine. Let
us discuss some examples.

1 A “Tame” Rational Function

Consider the function

f(x) =
x3 + 1

x2 + 1

(it is irreducible: thanks to a well known special product x3+1 = (x+ 1)
(

x2 − x+ 1
)

,
so that there is no common factor). Now, the function is always defined, since
x2+1 ≥ 1, and, as x grows in absolute value, 1 becomes negligible compared to

both x2 and x3. Hence, the function will eventually behave roughly like x
3

x
2 = x,

that is will behave (for large |x|) almost like a linear function. To be more
precise, we need to perform the division, ending up with

x3 + 1

x2 + 1
= x+

1− x

x2 + 1

so that, indeed, in the log run, the function will behave like y = x:
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2 A “Hole “ In The Domain

Let’s change the function a little:

g(x) =
x3 + 1

x2 − 4

The argument above about what happens when |x| is very large is the same (4
is just as negligible as 1, when confronted with a large |x|), but now the function
is undefined when x2 − 4 = 0, i.e. x2 = 4, which is true if x = 2, or x = −2.

Now, when we chose a value very close to either 2 or −2, we have an inter-
esting behavior. Take, say, x very close to 2. Then, x3 + 1 is going to be very
close to 9, but x2 − 4 will be very close to 0. Now, a number like 9, divided
by a very small number will result in a huge absolute value. As a matter of
fact, if x is close to 2, and less than 2, x2 − 2 < 0, but really close to 0. So we
have something approximately equal to 9, divided by a negative number with
a really small absolute value, resulting in a negative number with a really large
absolute value. If x > 2, but very close, we will have a similar behavior, with a
positive result, still with a very large absolute value. In fact, the absolute value
of g(x) grows without bound as we approach 2 from either side. In some sense,
the vertical line x = 2 acts as a separator between two parts of the graph, with
the graph getting closer and closer to this line, without ever touching it (2 is
not in the domain of g). The line x = 2 is called a vertical asymptote. The
same feature (with small adaptations) is observed if x is very close to −2, and
this function has two vertical asymptotes: x = −2, and x = 2. A graph gives
an idea (but cannot conclusively prove that we do have an asymptote - as far as
your calculator knows, the graph might climb very high, but then come down):
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By the way, a calculation just as in section 1 shows that for large |x| this
function will behave like y = x.

3 Stabilizing

Consider now a different variation on our original function:

h(x) =
x2 − 1

x2 + 1

(it’s still irreducible: x2+1 cannot be factored). Like the case of f in section 1,
this function is defined everywhere. However, if we now think of x as having a
large absolute value, so that 1 becomes almost negligible, h will look very much

like x
2

x
2 = 1, that is, like a constant. In other words |h| will not grow without

bound at all. It will actually tend to lie down horizontally, looking very much
like the constant function y = 1. The line y = 1 will thus be approached closer
and closer by h, as |x| grows1. Again, a graph helps understand what is going
on, but, in principle, for all your calculator knows, for extremely large x the
graph might suddenly start to jump all over the place - the range of numbers
your calculator understands is large, but finite):

1 In principle, the graph could cross the line y = 1 somewhere, which in this case it doesn’t,
but in any case, “in the long run” the graph of h will approach but never again touch the line
y = 1. In fact, suppose that for some value of x, h(x) = 1. Then

x2 − 1

x2 + 1
= 1

x2 − 1 = x2 + 1

which cannot be ever true, or we would have that −1 = 1!
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4 All Of The Above

Nothing prevents a rational function to have both types of asymptote. For
example,

k(x) =
x2 + 1

x2 − 1
has two vertical asymptotes, x = −1, and x = 1, and the horizontal asymptote
y = 1:

5 Finally, A Rule Of Thumb

How can we spot without too much work what, if any, asymptotes there may
be? It’s easier than you might think. In fact we have this easy rule of thumb
(you can convince yourself that it works by trying to mimic the arguments in
the preceding sections):
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1. If there are values of x that cause the denominator to be zero, while the
numerator is not zero, there is a vertical asymptote, corresponding to that
value.

2. If the numerator has a higher degree than the denominator, there are no
horizontal asymptotes. If the degree of the numerator exceeds the degree
of the denominator by 1, there is an oblique asymptote (to be determined
by dividing the two polynomials).

3. If the numerator degree less than or equal to the denominator, there is a
horizontal asymptote (if the denominator has higher degree, the asymptote
is y = 0, if they have the same degree, the asymptote is given by y = c,
where c is the ratio between the coefficients of the highest powers in the
numerator and the denominator2

2 So, for example,
3x4 + 4x2 − 2

5x4 + 3

has no vertical asymptotes (5x4 + 3 ≥ 3), and has a horizontal asymptote, y = 3
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