## Stretching, Reflecting, Shifting

Changing the constants that appear in an algebraic formula changes the graph in some predictable ways.

## Principles:

- Changing the $x$ (the input) changes the horizontal.
- Changing the $y$ (the output) changes the vertical.
- Multiplying by a constant stretches (or squashes) the graph.
- Multiplying by -1 reflects the graph.
- Adding a constant shifts the graph.

Details: Start with the graph of $y=f(x)$. The graph of each of the following will have the same basic shape as $y=f(x)$, altered as noted. For all of these, $a$ is a constant

- $y=a f(x)$ is $a$ times as tall.
- $y=-f(x)$ is reflected vertically across the $x$-axis (upside down).
- $y=f(x)+a$ is shifted up $a$ units.
- $y=f(a x)$ is $\frac{1}{a}$ times as wide.
- $y=f(-x)$ is reflected horizontally across the $y$-axis.
- $y=f(x+a)$ is shifted to the left $a$ units.
- Notice that for horizontal stretches or shifts, the effect is sort of the inverse of what you might expect at first. These can be confusing - check your answers by plotting a couple of points.
You can handle these all at once. You can do horizontal and vertical changes independently. For each of these, follow the order of operations - stretch and reflect first, then shift. Use the origin as your anchor point, even if it's not on your graph.

Example: The graph of $y=-4|x-2|+5$ has the same basic shape as $y=|x|$. It's shifted to the right 2 units. It's upside down, 4 times as tall, and has been shifted up 5 units. So the new graph has its vertex at $(2,5)$, opens down, and looks stretched vertically compared to the original. You can plug in a point or two to confirm your answer. The new graph goes through the point $(0,-3)$, which makes sense. If you move 2 units to the left of the vertex, the unchanged graph goes up 2 units. Here, it goes down (because the graph is upside down) 8 units (because the graph is stretched by a factor of 4 .)


