Construction Proof for $\sin(\alpha + \beta) = \dots$ and $\cos(\alpha + \beta) = \dots$

Prove by construction that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ and that $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$, if α and β are positive acute angles.

Although this proof is for the case when $0^{\circ} < \angle \alpha + \angle \beta$ and $\angle \alpha$ and $\angle \beta$ are both positive, it can be extended to any $\angle \alpha$ and $\angle \beta$.

Angle α is in the standard position. Angle β is added to angle α . The proof is divided into two cases.

Case 1: $0^{\circ} < \angle \alpha + \angle \beta \le 90^{\circ}$

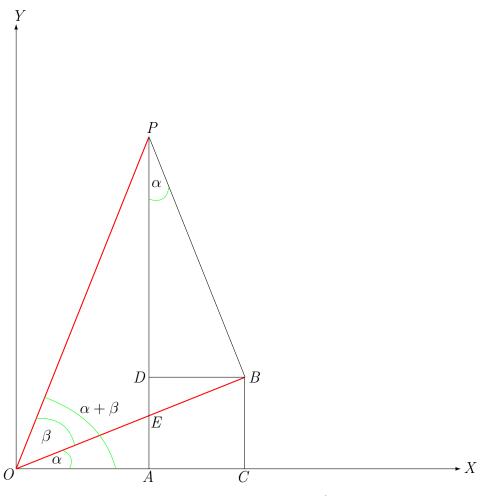


Figure 1: $0^{\circ} < \angle \alpha + \angle \beta \le 90^{\circ}$

Let P be any point on the terminal side of $\angle \alpha + \angle \beta$. Draw PA perpendicular to OX. Draw PB perpendicular to the terminal side of $\angle \alpha$; BC perpendicular to OX; and BD perpendicular to PA. Line OB intersects line PA at point E.

We now have to prove that $\angle \alpha = \angle APB$.

By vertical angles, $\angle AEO = \angle PEB$. By construction, $\angle PAO$ and $\angle PBO$ are both right angles. Since the angles of a triangle sum to 180° , $\angle AOE$ in $\triangle AOE$ is equal to $\angle EPB$ in $\triangle EPB$; therefore $\angle \alpha = \angle APB$.

The rest of the proof consists of basic definitions and algebra:

$$\sin(\alpha + \beta) = \frac{AP}{OP} = \frac{AD + DP}{OP} = \frac{CB + DP}{OP} = \frac{CB}{OP} + \frac{DP}{OP}$$
$$= \left[\frac{CB}{OB} \times \frac{OB}{OP}\right] + \left[\frac{DP}{BP} \times \frac{BP}{OP}\right]$$

By relating the constructed figure to the last expression in the above equality, we can see that:

•
$$\frac{CB}{OB} = \sin \alpha$$
 • $\frac{OB}{OP} = \cos \beta$
• $\frac{DP}{BP} = \cos \alpha$ • $\frac{BP}{OP} = \sin \beta$

Therefore $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.

For the cosine formula:

$$\cos(\alpha + \beta) = \frac{OA}{OP} = \frac{OC - AC}{OP} = \frac{OC - DB}{OP} = \frac{OC}{OP} - \frac{DB}{OP}$$
$$= \left[\frac{OC}{OB} \times \frac{OB}{OP}\right] - \left[\frac{DB}{BP} \times \frac{BP}{OP}\right]$$

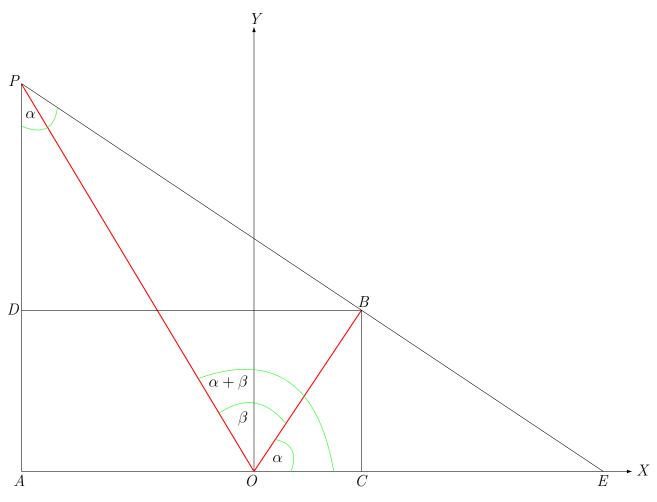
Then:

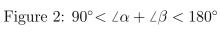
•
$$\frac{OC}{OB} = \cos \alpha$$
 • $\frac{OB}{OP} = \cos \beta$

•
$$\frac{DB}{BP} = \sin \alpha$$
 • $\frac{BP}{OP} = \sin \beta$

and so $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$.

Case 2: $90^{\circ} < \angle \alpha + \angle \beta < 180^{\circ}$





The figure for Case 2 looks different from the figure for Case 1 but is contstructed in essentially the same way. Note that line OB no longer intersects line PA and that point E now lies on line OX.

In this case we have to prove that $\angle \alpha = \angle APE$. We start by showing that $\triangle COB \sim \triangle CBE \sim \triangle APE$.

 $\angle OBC + \angle CBE = 90^{\circ}$ By construction. $\angle CEB + \angle CBE = 90^{\circ}$ Sum of acute angles in $\triangle ECB$. $\angle OBC = \angle CEB$

Triangles COB and CBE have two angles equal and are therefore similar. It is obvious from Figure 2 that $\triangle CBE \sim \triangle APE$. Then it follows that $\angle \alpha = \angle CBE = \angle APE$.

The algebra for proving the two formulas is then similar to that of Case 1.

Reference

Frank Ayres Jr. Schaum's Outline of Theory and Problems of Trigonometry. The McGraw-Hill Companies, Inc., New York, 3rd edition, 1999. See p. 102.