Rate of Change and Average Rate of Change

For a function $f(x)$, we introduced the rate of change over a (usually small) interval of length h, as $f(x+h)-f(x)$. Consequently, we defined the average rate of change over the same interval as $\frac{f(x+h)-f(x)}{h}$.

The book discusses how the average rate of change of a polynomial changes if we keep h fixed, and vary the point x. In the following discussion, h will be assumed to be small. Note that as soon as $h<1, h>h^{2}>h^{3}>\ldots$, with the inequalities becoming stronger the smaller h is.

For example, if $f(x)=2 x^{3}+x^{2}-3 x+1$, we have

$$
\begin{gathered}
\frac{1}{h}\left(2[x+h]^{3}+[x+h]^{2}-3[x+h]+1-2 x^{3}-x^{2}+3 x-1\right)= \\
=\frac{1}{h}\left(6 x^{2} h+6 x h^{2}+2 h^{3}+2 x h+h^{2}-3 h\right)= \\
=6 x^{2}+2 x-3+(6 x+1) h+2 h^{2}
\end{gathered}
$$

If h is very small, the average rate of change of our third degree polynomial is almost equal to a second degree polynomial (up to a term proportional to the small quantity h). As discussed in the book, this is a general fact: the average rate of change of a polynomial of degree n, for h fixed, is given by a polynomial of degree $n-1$ plus terms that are small if h is small (in general, there will be terms proportional to h, h^{2}, and on, up to h^{n-2}, which will be even smaller)

We can ask a different question: how does the rate of change depend on h, for a given value of x ? Using the same example, we have that
$f(x+h)-f(x)=6 x^{2} h+6 x h^{2}+2 x h+h^{2}-3 h=\left(6 x^{2}+2 x-3\right) h+(6 x+1) h^{2}+2 h^{3}$
We notice three terms (because we are working with a third degree polynomial). The first is proportional to h, and the coefficient is exactly the average rate of change. What about the second term, proportional to h^{2} (hence smaller). We can check that $6 x+1$ is half the average rate of change of $6 x^{2}+2 x-3$ (up to a small error, proportional to h):

$$
\begin{aligned}
& \frac{1}{h}\left[6(x+h)^{2}+2(x+h)-3-6 x^{2}-2 x+3\right]= \\
& =12 x+6 h+2=12 x+2+6 h=2(6 x+1)+6 h
\end{aligned}
$$

This is actually only a step in a pattern: the third term has a coefficient, 2, which is equal to $\frac{1}{6}=\frac{1}{2 \cdot 3}$ times the the average rate of change of the average rate of change $12 x+2$ (up to the usual small error), that is its slope (it is linear) divided by 6 .

If we had worked with a higher order polynomial, we could have gone further, and if you try it, you will see that a fourth term (in h^{4}) would have a coefficient almost equal to the average rate of change of the previous term, divided by $\frac{1}{2 \cdot 3 \cdot 4}=\frac{1}{24}$, and so on.

While at this point all of this is just a curiosity, it turns out to be a basic feature of what is known as differential calculus.

However, a formula like (1) gives significant information. Indeed, it tells us that if h is small enough that we can ignore the terms in h^{2} and h^{3}, the graph of f near x will coincide almost exactly with that of the straight line $\left(6 x^{2}+2 x-3\right) h$ (remember that here x is fixed, and we look at this as a function of h, that is we are looking at the values of f near $f(x))$. That will be the tangent line to f at $x, 6 x^{2}+2 x-3$ being its slope! But what if x is such that $6 x^{2}+2 x-3=0$? Then we cannot ignore the term in h^{2} any more, since it is the largest term, and the graph will be close to that of the quadratic function $(6 x+1) h^{2}$ near $h=0$, that is it will exhibit a maximum if $6 x+1<0$ and a minimum if $6 x+1>0$ at x !

Even if the term proportional to h does not vanish, if h is such that we can only ignore h^{3} compared to h and h^{2}, the formula tells us that the graph of f near x will not be quite a straight line, but almost coincide with the graph of the quadratic function $\left(6 x^{2}+2 x-3\right) h+(6 x+1) h^{2} .6 x+1$ being the coefficient of the quadratic term, it will tell us that the graph will look like that of a concave up parabola if $6 x+1>0$ near x, of a concave down parabola if $6 x+1<0$. What of $6 x+1=0$? Now the h^{3} term cannot be ignored any more, so the graph will look like that of a cubic function, where the concavity changes (this is called an inflection point). While our example is a cubic function, so this last "approximation" is actually exact, this argument works perfectly well for a higher order polynomial which would produce also terms in h^{4} and higher.

