Rate of Change and Average Rate of
Change

For a function f(z), we introduced the rate of change over a (usually small)
interval of length h, as f(x + h) — f(z). Consequently, we defined the average
rate of change over the same interval as M

The book discusses how the average rate of change of a polynomial changes
if we keep h fixed, and vary the point z. In the following discussion, h will be
assumed to be small. Note that as soon as h < 1, h > h? > h? > ..., with the
inequalities becoming stronger the smaller h is.

For example, if f(x) = 22% + 2% — 32 + 1, we have

%(2[x+h]3—|—[3:—|—h]2—3[a:+h]—|—1—23:3—a:2—|—3a:—1):
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== (62°h + 6xh® + 2h° + 2zh + h* — 3h) =

=627 + 22 — 3+ (6z + 1)h + 2h?

If h is very small, the average rate of change of our third degree polynomial is
almost equal to a second degree polynomial (up to a term proportional to the
small quantity h). As discussed in the book, this is a general fact: the average
rate of change of a polynomial of degree n, for h fixed, is given by a polynomial
of degree n — 1 plus terms that are small if & is small (in general, there will be
terms proportional to h, h?, and on, up to h"~2, which will be even smaller)

We can ask a different question: how does the rate of change depend on h,
for a given value of 27 Using the same example, we have that

f(z+h)—f(z) = 62°h+6xh*+22h+h*—3h = (62° + 22 — 3) h+(6z + 1) h*+2h*

(1)

We notice three terms (because we are working with a third degree polyno-

mial). The first is proportional to h, and the coefficient is exactly the average

rate of change. What about the second term, proportional to h? (hence smaller).

We can check that 6x + 1 is half the average rate of change of 622 + 2x — 3 (up
to a small error, proportional to h):

1
- 6(x+h)2+2(x+h)—3—6x2—2x+3} -

=122+ 6h+2 =122 + 24 6h = 2 (6 + 1) + 6h



This is actually only a step in a pattern: the third term has a coefficient, 2,
which is equal to % = 2—13 times the the average rate of change of the average
rate of change 122 +2 (up to the usual small error), that is its slope (it is linear)
divided by 6.

If we had worked with a higher order polynomial, we could have gone further,
and if you try it, you will see that a fourth term (in h*) would have a coefficient
almost equal to the average rate of change of the previous term, divided by
757 = 37, and so on.

While at this point all of this is just a curiosity, it turns out to be a basic
feature of what is known as differential calculus.

However, a formula like (1) gives significant information. Indeed, it tells us
that if / is small enough that we can ignore the terms in h? and h3, the graph of f
near x will coincide almost exactly with that of the straight line (65[:2 + 2z — 3) h
(remember that here z is fixed, and we look at this as a function of h, that is
we are looking at the values of f near f(x)). That will be the tangent line to f
at x, 622 + 22 — 3 being its slope! But what if x is such that 622 + 22 — 3 = 0?
Then we cannot ignore the term in h?any more, since it is the largest term, and
the graph will be close to that of the quadratic function (6x + 1)h?near h = 0,
that is it will exhibit a maximum if 6z +1 < 0 and a minimum if 6z +1 > 0 at
x!

Even if the term proportional to h does not vanish, if & is such that we can
only ignore h3compared to h and h?, the formula tells us that the graph of f
near x will not be quite a straight line, but almost coincide with the graph of the
quadratic function (622 4 2z — 3) h+ (62 + 1) h%. 62+ 1 being the coefficient of
the quadratic term, it will tell us that the graph will look like that of a concave
up parabola if 62 + 1 > 0 near z, of a concave down parabola if 6x + 1 < 0.
What of 6z + 1 = 07 Now the h3term cannot be ignored any more, so the
graph will look like that of a cubic function, where the concavity changes (this
is called an inflection point). While our example is a cubic function, so this
last “approximation” is actually exact, this argument works perfectly well for a
higher order polynomial which would produce also terms in h*and higher.



