
A Quick Comment On Precedence of Operators

Preliminary Material

We need to be clear on how you are supposed to read expressions without
parentheses. The accepted rules follow: they are the same that you find spelled
out in the instructions of your scientific calculator, or in the instructions of your
favorite computer language. Though they are, in a sense, arbitrary, they are
fully agreed upon, without mention, in any text you might encounter, so it is
very well worth while to learn them, to accept them, and to implement them in
your work

1 Precedence

Operations are called “unary” when they involve a single number. E.g., −a

means take number a and find its opposite. They are “binary” when they involve
two numbers (at least), e.g. sum, subtract, multiply, divide. Powers (of any
type, thus including radicals) are not “operations”, but rather “functions”.

In many cases, it doesn’t matter in what order you perform a sequence of
operations: in these cases there is no need to write out parentheses. For instance,

2 + 3− 1 + 5− 10 = (((2 + 3)− 1) + 5)− 10 = (((2 − 10) + 5) + 3)− 1 = . . .

or any other sequence you might choose.
On the other hand, it makes a lot of difference whether you do first a mul-

tiplication and next a sum or vice-versa:

2 + 3 · 4 = 2 + 12 = 14

if you first do the multiplications, but (2 + 3) · 4 = 24 if you first do the sum!To
make sure you do operation sin the intended order, you can use parentheses, so
we could write 2 + (3 · 4), and (2 + 3) · 4 in the two cases just mentioned.

People get weary of writing parentheses all the time, so they have agreed
on a convention, and imply a certain order of operations unless parentheses tell
them otherwise. The convention is

Confronted with a sequence of operations, with unary, binary oper-
ations, and functions, proceed as follows, unless directed otherwise
by explicit parentheses:

1



1. Evaluate all functions (the order in which they have to be evaluated will
be either expressed by parentheses or implied to be “left-to-right”)

2. Next, perform multiplications and divisions (by commutativity, it doesn’t
matter what order you follow here).

3. Next perform sums and differences (again, by commutativity, it doesn’t
matter what you do first)

4. Finally, apply unary operations.

2 Examples

Applying the rules is easy, once you get the knack.

1. 2 · x + x
2
−

2

x

1

2

: first evaluate the functions – here x
2, and x

1

2 – then

multiply/divide - here 2 · x, and 2

x

1

2

- finally sum and subtract (there are

no unary operators here). Wrapping up, with parentheses in the right spot
this means:

(2 · x) +
(

x
2
)

−





2
(

x
1

2

)





2. −x ·y
3: first the functions - y3 - next multiply - x ·y3 - finally (there are no

sums) apply the unary operator “negative”. With parentheses, this would
be written

−

(

x ·

(

y
3
))

3.
√

−32 is meaningless, because it means

√

− (32)

i.e., the function
√

is evaluated on whatever is inside, and this is the

function square (32), followed by the unary −.

4.

√

(−3)
2

is 3, because now we are instructed to first apply the unary −

and then square.

2


