Irrational Values

Ever since the ancient Greeks realized that $\sqrt{2}$ (the length of the diagonal to a square of side 1) cannot be expressed as a fraction, we know that as soon as we leave the comfort of the four elementary operations (sums/differences and products/quotients), we end up almost always with irrational values. That's a fact, as we can check right now. We only consider positive numbers, since none of the following operations can be applied to negative numbers (and, for logarithms, to zero).

1 Roots of rational numbers

Consider the r-th root $(r \geq 2)$ of the number $\frac{m}{n}$, where the fraction has been reduced to lowest terms (if the number is an integer, then $n=1$). Suppose this root was rational, say, $\frac{p}{q}$, also reduced to lowest terms. This means that

$$
\left(\frac{p}{q}\right)^{r}=\frac{p^{r}}{q^{r}}=\frac{m}{n}
$$

or

$$
n p^{r}=m q^{r}
$$

These are now two equal integers, and so they have the same prime factors. Since p and q have no common factors, just as m and n haven't, m must be a factor of p^{r}, which then is equal to $m k$ for some integer k, and n must be a factor of $q^{r}=n h$ for some integer h. So,

$$
m n k=m n h
$$

or $k=h$, but since p and q have no common (non trivial) factor, we have $h=k=1$, and $m=p^{r}, n=q^{r}$, so the fraction $\frac{m}{n}$ is actually an exact power. All fractions that are not exact powers have irrational roots.

2 Decimal Logarithms of Rational Numbers

In this and the next section we assume that the number we are taking the \log of is greater than 1 . If $\frac{m}{n}<1$, we just apply the argument to $\frac{n}{m}$.

Suppose the rational number $\frac{m}{n}$ (again, reduced to lowest terms) has a rational decimal logarithm, say, $\frac{p}{q}$ (again, lowest terms). This means

$$
10^{p / q}=\frac{m}{n}
$$

or

$$
\begin{gathered}
10^{p}=\frac{m^{q}}{n^{q}} \\
n^{q} 10^{p}=m^{q}
\end{gathered}
$$

Now, again, we have two integers and their prime factors have to be the same, but m and n have no common factors (hence so do m^{q} and n^{q}), so this can only happen if $n=1$ and then $m^{q}=10^{p}$, and a moment's reflection shows that this can only happen if m is a power of 10 (recall that $m=10^{p / q}$ cannot happen if m is an integer and p / q is not an integer: m would be the $q-t h$ non exact root of the integer 10^{p}, and we know from the previous section that this would be an irrational number).

3 Natural Logarithms of Rational Numbers

This is a somewhat elegant argument, as it is based on the (deep) fact that e (just like, for example, π) is a transcendental number, that is, it is not the root of any polynomial with integer coefficients. Now if the rational number $\frac{m}{n}{ }^{1}$ had a rational natural logarithm, say, $\frac{p}{q}$, we would have

$$
\begin{gathered}
e^{p / q}=\frac{m}{n} \\
e^{p}=\frac{m^{q}}{n^{q}} \\
n^{q} e^{p}-m^{q}=0
\end{gathered}
$$

and e would be a root of the polynomial $n^{q} x^{p}-m^{q}$, which is impossible (recall that $p \geq 1$).

[^0]
[^0]: ${ }^{1}$ We exclude $\frac{m}{n}=1$, which has natural logarithm 0 , so, in the following, $p \neq 0$, and $m \neq n$

