
Differential Calculus for Functions of
Two (and more) Variables.

1 Reminder for functions of one variable

As you know, a function of one variable is differentiable at x = a if limx→a
f(x)−f(a)

x−a
=

f ′(a) exists and is finite. This is completely equivalent to saying that f(x) =
f(a) + L(x− a) + Ea(x), for some finite number L (which turns out to be pre-

cisely equal to f ′(a)), and an “error term” Ea such that lim Ea(x)
x−a

= 0, that is,
it “goes to zero faster than x−a when x → a”. The first definition is convenient
for computing f ′(a), the second makes the computation useful, since it gives a
method for approximating f(x), if we know f(a), and f ′(a) (this can be put to
good use, for example for estimating

√
1 + x for small x). It also is how we find

the tangent to the graph of f(x) at the point x = a.

2 The 2-dimensional plane has much more room than the
1-dimensional line

The discussion for functions on one variable is made simple by the fact that you
can approach the point a in two ways only – from the left or from the right.
Instead, given a point in the plane (a, b) there are infinitely many ways in which
a point (x, y) could approach (a, b) along a curve.

This makes the differential calculus in two dimensions much trickier than
our familiar one-dimensional approach.

The naive approach is to think of a function of two variables f(x, y), as both
a function of x and a function of y and, for example, define it to be “continuous
at (a, b)” if limx→a f(x, b) = f(a, b), and limy→b f(a, y) = f(a, b). Similarly, you
could define it to be “differentiable at (a, b)” if it was separately differentiable
in x and in y – in other words, if it had partial derivatives at (a, b). The
book might give you the impression that that’s exactly the case (see page 194),
but you would be very wrong if you believed that, as we can show with a few
examples.
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2.1 The proper definition of “continuous” and of
“differentiable”.

To be formal, the previous “definitions”, based on separate behavior of the vari-
ables, could well be adopted – definitions are arbitrary, by definition (pardon
the pun). However, the point is that the “definitions” above are of practically
no use. Let’s think about it: the beauty of continuity in one dimension is that
if x is sufficiently close to a, f(x) is going to be close to f(a), allowing approx-
imations and related useful facts. In two dimensions, (x, y) is close to (a, b) if
both x is close to a and y is close to b simultaneously. The simplest way to
make sure that’s the case is to check that the distance between (x, y) and (a, b)
is small, that is check that

√

(x− a)2 + (y − b)2 is small1. Unfortunately, the
“definitions” in the previous section do not enforce this, and it is easy to define
a function that is “continuous” in the two variables separately, but takes very
different values from f(a, b) for (x, y) arbitrarily close to (a, b). What is worse, a
function can easily have partial derivatives but, again, take values very different
from f(a, b) even when (x, y) is arbitrarily close to (a, b). In other words, hav-
ing partial derivatives doesn’t even guarantee continuity. Note that, in analogy
with the one-dimensional case, we would like a function that is differentiable at
(a, b) to have a tangent plane there, that is a plane that closely approximates
the graph of f for (x, y) close to (a, b), but if the function is not continuous,
it will display a jump, a discontinuity in its graph and there is no way that a
plane could approximate that. As we will see shortly, having partial derivatives
does not guarantee that a tangent plane exists (correcting the impression you
might have gotten from the box “Approximating function values with partial
derivatives” at page 194).

Continuity

The proper definition of continuity, given the discussion above goes as follows:
a function f(x, y) is continuous at (a, b) if

lim
(x−a)2+(y−b)2→0

f(x, y) = f(a, b)

that is, if f(x, y) is close to f(a, b) as soon as the distance between (x, y) and

(a, b) is small enough.

1 There are many other equivalent ways to express closeness, for example require that
|x−a|+ |y−b| is small (it is easy to see that if this is small, so is the distance, and vice-versa).
We’ll stick with the distance for simplicity
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Differentiability

Planes are described by linear functions in two variables, so a plane going
through the point (a, b) will be described by a function of the form A(x− a) +
B(y− b), where A and B are two numbers. That suggests the proper definition
of “differentiable”, in analogy with the second definition we mentioned in the
one-dimensional case:

a function f(x, y) is differentiable at (a, b) if there exist two numbers A and

B such that

f(x, y) = f(a, b) +A(x − a) +B(y − b) + E(a,b)(x, y)

with

lim
(x−a)2+(y−b)2→0

E(a,b)(x, y)
√

(x − a)2 + (y − b)2
= 0

It is a simple exercise to verify that if f is differentiable, then A = fx(a, b),
and B = fy(a, b), so a differentiable function has partial derivatives. Unfortu-
nately, the converse is false, as we will now see.

2.2 Discontinuous functions with partial derivatives

There are a number of examples to show that partial derivatives, by themselves,
are basically irrelevant. Even worse, there are easy examples of functions f(x, y)
such that, if we approach (a, b) along lines, or even along fancier curves, are con-
tinuous (and since they are essentially functions of one variable when evaluated
like that, are differentiable in that one variable), but still are discontinuous.

1. A simple example. Define

f(x, y) =

{

xy

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Since f(0, y) = f(x, 0) = 0, the function is continuous in the two variable
separately (it is constant on both cases), and has partial derivatives (both
equal to 0). However, if we let (x, y) approach (0, 0) along a straight line,
say y = mx, the function evaluates on this line as

mx2

x2 +m2x2
=

m

1 +m2

that is a non zero number when m 6= 0, no matter how close to (0, 0) the
point (x,mx) is.
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2. It gets worse. Define

f(x, y) =

{

x2y
x4+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

As before, f(0, y) = f(x, 0) = 0, so we have zero partial derivatives. But
now, if we approach (0, 0) along a straight line y = mx the function
evaluates as

f(x,mx) =
mx3

x4 +m2x2

whose limit as x → 0 is clearly 0. Moreover, if we compute the derivative
at 0 of this function of x (since the definition is piecewise, we have to

actually evaluate f(x,mx)−f(0,0)
x

), we find

lim
x→0

mx2

x4 +m2x2
=

1

m

(this is called the directional derivative along the line y = mx). So this
function is continuous, and, in fact, differentiable, along any straight line
going to the origin. However, if we look at its behavior along the curve
y = x2, it evaluates as

x4

x4 + x4
=

1

2

no matter how close to 0 x may be!

3. The previous example is just the beginning of a host of similar functions,
that are “continuous” along many curves, but are still discontinuous. A

strong example relies on the fact that limx→0
e
−

1

x
2

xr
= 0, for any r. The

function defined by

f(x, y) =







e
−

1

x
2 y

e
−

2

x
2 +y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

has, again, partial derivatives equal to 0, but also is “continuous”, and, in
fact, “differentiable”, if evaluated along any curve y = xr, but evaluated

along y = e−
1

x
2 , is constant, equal to 1

2 no matter how close to (0, 0) we
get.
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4. You can work out many other similar examples by choosing a convenient

function h(x), such that h(x)
x

→ 0, as x → 0 (you may make it go to 0

as fast as you wish, to make strong examples, e−
1

x
2 being a very rapidly

vanishing function2), and define

f(x, y) =

{

h(x)y
h2(x)+y2 (x, y) = (0, 0)

0 (x, y) = (0, 0)

2.3 Are partial derivatives useless?

Of course not. But the fact is that for differentiability, existence of partial
derivatives is not enough. It turns out, though that the following very useful
theorem holds:

If the function f(x, y) has partial derivatives at (a, b) that are continuous,

the function is differentiable at (a, b).
Of course, all the examples you see in the book fall in this category.

Note Continuity of the partial derivatives is sufficient for differentiability, but
is not necessary. On can produce fairly elaborate examples of functions
that are differentiable at a point, but whose partial derivatives are not
continuous there. That said, in areas where we don’t require very rigorous
hair-splitting precision, like engineering, economics, and so on, the practi-
cal definition of “differentiable” is “has continuous partial derivatives”, and
that’s how we are proceeding in this course.

2.4 By the way...

Differentiability is just one example of how the transition from one to two (or more)
dimensions is non trivial. Another interesting example consists in the study of critical
points. In one dimension, a function with enough derivatives, has a clear behavior at

a critical point if it has a non zero derivative of some order there (so e
−

1

x
2 does not

work): if the first non zero derivative is of even order (2,4,...), the critical point is
a maximum (if the derivative is negative) or a minimum (if it is positive; if the first
derivative is of odd order (3,5,...), the point is a horizontal inflection point, increasing
if the derivative is positive, decreasing if it is negative). In two, or higher dimensions,
we know how to classify a critical point if D = fxxfyy − fxyfyx 6= 0 (assuming all
derivatives are continuous as this is now our standing assumption). When D = 0, it
turns out that there are many possibilities, and none is recognizable with as simple a
rule as that for one dimensional critical points. In fact, at some point in the 70s, this
was a popular topic of research, under the catchy title of “Catastrophe Theory” (the
motivation of this peculiar name is available on request).

2 You can read about e
−

1

x
2 in another item, “zeroderivative.pdf”, in this “Additional Ma-

terials” collection, as a popular example. Precisely, if we define k(x) =

{

e
−

1

x
2 x 6= 0

0 x = 0
, k is

obviously continuous, but it also has all derivatives, all infinitely many of them, and all such
that k(m)(0) = 0, m = 1, 2, . . ., even though it is not zero for any x 6= 0.


