
Additional Comments

1 Computing Parameters of the Binomial Distribution
Directly

We have that, for a Bin (n, p) Random Variable X ,

EX =

n
∑

i=1

(n

i

)

ipi (1− p)
n−i

EX2 =
n
∑

i=1
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i

)

i2pi (1− p)n−i

The book has a clever trick to compute, recursively, EXk. The following method
is an alternate way, recursive as well.

1.1 Expected Value

This is not so hard:

ipi (1− p)n−i = (1− p)n i
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)i

=
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(1− p)n i

(

p
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Hence, setting, say, u = p
1−p

, the expected value looks like
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∑
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[
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]
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(1 + u)n =
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n

(
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p
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= np

This is the well-known result, and it can be quickly proved in a number of
other ways, including X being the sum of n Bernoulli Random Variables, or
from its moment generating function, and connected functions:
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(
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(
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1.2 Expectation of the Square

We could go through the moment generating function, or through the sum of
(and it’s important here) independent Bernoulli variables. But here is a direct
calculation. We have to be a little deceitful here: we note that

EX2 = EX2 − EX + EX

so that
n
∑

i=1

(n

i

)

i2pi (1− p)n−i =
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∑
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We are now ready to repeat the trick in section 1.1:

n
∑
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i
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n
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Hence, setting again u = p

1−p
, we have

EX2 − EX = p2 (1− p)
n−2 d2

du2

n
∑

i=1

(n

i

)

ui = p2 (1− p)
n−2 d2

du2
(1 + u)

n
=

= p2 (1− p)
n−2

n(n− 1)

(

1 +
p
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Combining our results, we have that

EX2 = n(n− 1)p2 + np

Going to the variance, we then find that

V ar [X ] = EX2 − (EX)
2
= n(n− 1)p2 + np− n2p2 = np− np2 = np(1− p)

1.3 Higher Moments

Of course, the same trick works for any moment. After all

E [Xm] =
n
∑

i=0

im
(n

i

)

pi (1− p)n−i

So, for m = 3, we note that i (i− 1) (i− 2) = i3 − 3i2 + 2i, for m = 4,
i (i − 1) (i − 2) (i− 3) = i4 − 6i3 + 11i2 − 6i, and so on, and to compute E [Xn]
we just need to add/subtract the corresponding combination of lower moments
to have an expression that can be evaluated through

dm

dum

∑

(n

i

)

ui =
dm

dum
(u+ 1)

n
for u =

p

1− p
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2 Countable Random Variables

In general, if a Random Variable (abbreviated to RV from now on) takes a
countable number of values, say x1, x2, . . ., the associated probabilities must
form a convergent series of positive numbers:

∑

∞

k=1 P [X = xi] = 1. Thus, if
we want to define distributions that take on a countable number of values we
need to come up with absolutely convergent series. To make the distribution
explicit, we should also be able to evaluate the sum of such series, which is a
totally different game.

Restricting, for simplicity, to the case of integer values RV’s, we will, set-
ting pn = P [X = n], be able to evaluate

∑

∞

k=1 pn. To be precise, for any
known convergent series

∑

∞

k=1 ck = C, we may define a probability distribu-
tion P [X = k] = ck

C
. For convenience, we may choose to consider variable with

values in N, or in Z
1.

For example, we know that
∑

∞

k=0 q
k = c = 1

1−q
, hence we can come up with

a distribution of the form

P [X = n] = cqn−1

and it turns out that c = (1− q). Of course, this is the geometric distribution.
Similarly, we are familiar with the convergent series

∞
∑

k=0

λk

k!
= eλ

We may thus define a distribution via

P [X = k] =
λk

k!
e−λ k = 0, 1, . . .

which, of course, turns out to be the Poisson distribution.
The problem here is that it is generally hard to express the sum of a conver-

gent series explicitly. Thus, it is not so easy to come up with clever and diverse
explicit countable distributions.

Thus, for example, it turns out that
∑

∞

k=1
1
k2 = π2

6 , so

P [X = k] =
6

π2k2

is a probability distribution (for variables such that no moments exist). In
general,

∞
∑

k=1

1

kn
= ζ (n)

1 As you most likely know, N stands for the set of natural numbers, that is positive integers,

while Z is the set of non negative integers.
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where ζ is Riemann’s zeta function (a function with amazing ramifications in
many diverse parts of mathematics), so we can say that

P [X = k] =
1

ζ(n)kn

is a probability distribution (listed in the book as “Zeta” or “Zipf”). If you are cu-
rious, here is a snapshot from http://mathworld.wolfram.com/RiemannZetaFunction.html
listing the first few positive integer values for ζ :

These are distributions “with fat tails”, in that they have moments only
up to n − 2. This shows up also in the fact that they do not admit a moment

generating function, and the corresponding characteristic function only has n−2
derivatives.

3 Characteristic Functions of Distributions

For completeness, let’s compute (as far as feasible) the moment generating func-
tion (or, when that’s not available, the characteristic function: if the moment
generating function exists, you get the characteristic function by substituting it

in place of the real variable t, and, for integer valued distribution, the generating
function by substituting z for et) of the distributions we have listed:

3.1 Bernoulli (parameter p)

We have
MB(t) = pe1·t + (1− p)e0·t = 1 + p

(

et − 1
)

3.2 Binomial (parameter n, p)

We have
M(t) = [MB(t)]

n =
[

1 + p
(

et − 1
)]n
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3.3 Geometric (parameter q)

We have

M(t) =

∞
∑

n=1

entq (1− q)
n−1

= etq

∞
∑

n=1

[

et(1 − q)
]n−1

=
etq

1− et(1− q)

3.4 Poisson (parameter λ)

We have

MP =
∞
∑

k=0

etk
λk

k!
e−λ = e−λ

∞
∑

k=0

(etλ)
k

k!
= e−λeλe

t

= eλ(e
t
−1)

3.4.1 Another way to view the Poisson distribution as the limit of

binomials

We have to rely on a theorem that is beyond the scope of our course (and
is based, essentially, on the possibility of inverting the Laplace and/or Fourier
transform), which states, roughly, that if a sequence of distributions corresponds
to a sequence of MGF’s (or characteristic functions) that converge to a MGF
(or a characteristic function), then, in a natural sense, so do the distributions
themselves2.

Suppose we have a sequence of Binomial distributions with

Mn(t) =
[

1 + p
(

et − 1
)]n

and n → ∞, p → 0, np = λ > 0 constant. Then,

Mn(t) =

n
∑

k=0

(n

k

)

pk
(

et − 1
)k

=

∞
∑

k=0

n!

k!(n− k)!

(

et − 1
)k

pk

Now, just as in the usual proof, we may use the fact that

n!

(n− k)!
≈ nk

so that

Mn(t) ≈
∞
∑

k=0

(np (et − 1))
k

k!
= eλ(e

t
−1)

having set λ = np.
Note that, taking derivatives, the sequences of derived functions, {M ′

n} , {M
′′

n},
etc. converge nicely, so that it is legitimate to exchange derivatives and limits.
It follows that we can indeed evaluate the moments fo the Poisson distirbution
by taking limits of the moments of the approximating Binomials.

2 The technical definition is as follows. Suppose you have a sequence of RV’s Xn, whose

characteristic functions are such that limn→∞ CXn
(t) = C (t). Then for any continuous

bounded function f , E [f (Xn)] → E [f (X)], where X is a random variable whose distribution

has characteristic function C(t).
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3.5 Zeta Distributions

Here we are not going to get a closed form expression. However, we can say
that

Cn (t) =
∞
∑

k=1

eikt
Kn

kn

(where Kn = 1
ζ(n) ). As long as the series of derivatives Are uniformly conver-

gent, we can derive term by term, and find

dm

dtm
Cn(t) =

∞
∑

k=1

Kne
ikt k!

(k −m)!kn

which, of course, is valid, as long as k!
(k−m)! ≤ kn−2, or m ≤ n− 2


