Classroom Notes

Math 394B Summer 2005
Week 5

1 Discrete Random Variables

In an operational sense, all random variables (R.V.) are discrete (and finite).
This is in the same sense as, operationally, we can only deal with rational num-
bers (in fact, “real” numbers are defined only through limit operations on ratio-
nal numbers), but it would be extremely cumbersome to perform any advanced
calculations if we restricted ourselves that way.

A R.V. can be viewed as the result of a specific measurement which depends
on the result of a random experiment - a function

X:O—R

Since our measuring instruments all have a finite range (no “infinite” readings
- in fact, our readings are bounded by the scale of the instruments), and a
finite precision (e.g., with a precision chronometer, in track and field events, the
lower threshold for precision is currently ﬁs), any measurement will produce
numbers restricted within a finite set - possibly a huge set, but still finite (in
the track and field example, we could only observe numbers %, where k =
0,1,2,..., N x 3600 x 100, where N is the longest time (in hours) that the
chronometer is able to report).

As noted, it would be very awkward to work within this frame, and we
will indeed introduce infinite (better said, unbounded) R.V.’s, and continuous
R.V.s. It is good, though, to remember that what makes sense operationally are
only discrete and finite approximations to these entities: all definitions should
be constructed as limits from the discrete (and finite) setting in order to make
sense unambiguously.

2 Describing Random Variables

We consider for the moment only discrete and finite R.V.’s. Let X be such a
R.V. For any z, the function px (z) = P [X = z] is well defined: it is equal to
zero, except at a finite number of values, say x1,x2, ..., %y, and



The function px (z) is called the distribution or the probability mass function
of X, and it carries all probabilistic information that depends on X (and on X
only). Our job will be, in general, to compute probabilities of events that depend
on what values X takes, and the distribution will be the basic tool.

2.1 Alternative Ways to Present Distributions
It is sometimes convenient to use alternative functions which carry the same
information as px (z). The prime example is
2.1.1 The Cumulative Distribution Function
This is also sometimes called the “Distribution Function”, and is defined as
Fx (z) = P[X < 2]

Clearly, if X takes on the values 1 < 23 < ... < z,, and zy <z < xf,

Fx (z)= Y px(z))
oj<ay,
A few properties are easy to see:
1.0< Fx (z) < 1
2. Fx (x) is nondecreasing

3. Fx () is constant except at points x;, such that px (z;) > 0, where it
has a jump discontinuity equal to px (z;)

4. Since we (arbitrarily) used a < in the definition of Fx, instead of a <
sign, Fx is continuous from the right, i.e., for every x (whether it is a
jump discontinuity point for F'x or not)

Fx (er) :=1lim Fx (z) = Fx (y)

zly
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By simple subtraction,
px (zx) = F (wr) — Fx (2y)

(the last term is the left limit of F'x at xy), so that knowledge of Fx allows us
to calculate px, as well as vice-versa.

One “privilege” of the cumulative distribution function is that it is easily
extended to the case of non-discrete R.V., and even allows to work on some
difficult cases bypassing, at least initially, the necessary technical issues involved
in advanced integration theory (more about this later)



2.1.2 The Survival Function

Obviously equivalent to Fx, this is a function especially popular in “survival
analysis” (modeling the survival of organisms in biology and medicine), and
“reliability theory” (modeling the same thing for machines):

Rx () :=P[X >z]=1-Fx (x)

In the case of applications to survival analysis or reliability, X would be the
“lifetime” of the object of study, and it would then be necessarily X > 0, but
there is, of course, no reason to ban the use of Rx in more general situations.

You are urged to write up the properties of R that follow directly from the
properties of F'.

2.2 Parameters Of A Distribution

Before looking at yet more ways to characterize the distribution of a R.V., it is
necessary to note that, often enough, it is pretty hard to come up with a full
description of a R.V., and we may limit ourselves to limited information. That’s
why we introduce expected values, variances, etc.

2.2.1 Moments Of A Distribution

As discussed in the book, and in class, we are led to introduce the following
numbers, associated to the distribution of a random variable:

e Absolute Moments (sometimes called “cumulants”):

my =B [X"] E=1,2,...
e Centered Moments (or just “moments”)
My =mq
Mk:E[(XfMl)k} k=23,...

The centered 2nd moment is known as the “Variance”.

It is a boring, but straightforward calculation (using “Newton’s Binomial
Formula”) to check that we can reconstruct absolute moments form their cen-
tered cousins and vice-versa.

The 1st and 2nd moments are the most commonly used, and it should be
clear that they are very far from a full description of a R.V. Unless very specific
assumptions are made, they do in fact carry extremely minimal information.

For a discrete and finite R.V. (as we are presently considering), if enough mo-
ments are given, we can reconstruct the distribution - but this problem (known



as the “moment problem”) is not nearly as easy, or even solvable, in the general
case. In fact, we note that

my = E[X] = Zzz'px ()

mi = szpx (351) (1)

where x;, i =1,2,...n are the possible values of X.

Suppose we know the first n — 1 moments. Then, together with the relation
> px (x;) =1, (1) produces a system of n equations in the n unknowns px (z;).
The coefficcient matrix of this system is

1 1 .. 1 1
X1 X9 cee -1 In
n—2 n—2 n—2 n—2

1'1 1 :CQ 1 'rnf% Ty 1
n— n— n— n—
1 Lo Tpn—1 Tn

The system does not have a unique solution if and only if there is a linear
combination of the rows that is equal to zero, i.e. if

n—1
Zakac?:O i=12...,n
k=0

i.e., if the n values taken by X happen to be n zeros of a polynomial of degree
n—1 - and, since they are all distinct, they cannot be (there are, at most, n — 1
such values). Of course, solving such a system, for n large, is a totally different
and very long calculation.

2.2.2 Expectations Of Functions of a R.V.
The moments of X are a special case of expectation of a function of X: they
are the expectations of the powers of X. More generally, we have seen that

n

E[f(X)] = px () f ()
i=1
(with the same notations as in (1)). The discussion of the “moment problem”
suggests the further question: is there a class of functions f, such that knowledge
of E[f (X)] for all of them is enough to recover the distribution of X?

2.3 Generating Functions And All That

It should be clear that, in our case of finite discrete R.V.’s, there will be a lot of
these classes. However, we might want to concentrate on classes that are easy
to handle, and work to the same effect in more general cases.



2.3.1 The Moment Generating Function

It turns out that a useful class of functions is the family e*, of exponentials,
with parameter ¢ (each value of ¢ gives a member of the family). The function

E[eX] = Mx (t)

is called the moment generating function, and the reason is that, by expanding
it in powers of p, we find the absolute moments of X in the coefficients of the

successive terms: i
> t
EWﬂ:}jﬂXﬂH

(in our finite case, there is no question of convergence, since | X| < A for some
number A). Clearly, just by referring to sec. 2.2.1, Mx will allow the recon-
struction of px.

In the more general case of a continuous R.V., the moment generating func-
tion is known to analysts as the Laplace transform of the distribution of X. Of
course, recovering the distribution form the MGF in a general setting means
inverting a Laplace transform, which is not a task for the faint-hearted.

2.3.2 The Characteristic Function

This is the name that (unfortunately) is used in probability for what analysts call
the Fourier transform of the distribution. That’s why the function 14 (z) =1
forz € A, 14 () =0 for x ¢ A is called the indicator function by probabilists,
while in analysis it is usually called “characteristic function” (argh!). Anyway,
this is a complez-valued function (OK, it would be possible to consider its real
and imaginary parts as a pair, but it is just too cumbersome):

Cy (t) = E [e"X] = E[cos (tX)] + iE [sin (tX)]

Clearly, using power expansion again, it is easy to see that this function also
characterizes the distribution of X. Its value lies in the fact that it can be
defined for all R.V.’s, while the Moment Generating Function requires some
restrictions, when we operate in full generality.

Again, in full generality, recovering a distribution from its characteristic
function is equivalent to inverting a Fourier transform, which is an advanced
problem.

2.3.3 Generating Functions

There is a special group of discrete R.V.’s for which the characteristic function
can be rewritten in a suggestive way. Namely, consider a R.V. that takes only
non negative integers as values. To cover all cases, we set

pi=P[X =i i=0,1,2,...



for all integers. We can include the case of integer-valued variables that take on
infinitely many values. In any case, with some of the p; possibly being zero, we

will have -
> pi=1
=0

Let us write now the CF of such a R.V.:
E [eitx} =F [(e“)x] =F [ZX} =Hx(z)= ijzj
j=0

if we define the complex number z = e = cost 4 isint. A direct check shows

that |z| = cos?t +sin® ¢ = 1. We can actually let  take values such that |z| < 1
too, since Hx is defined as a power series whose radius of convergence is no less
than 1, since setting » = 1 yields Hx (1) = >>72 p; = 1.

The interesting thing about the generating function is that the coefficients
of its power expansion yield the distribution weights directly.

3 Calculating Distributions

The point of introducing tools like those in sec. 2.3 is that they allow (some-
times) to get the distribution of a R.V. relatively easy.

You will have noticed that the functions we have used are all of the form
e*X where a is a real or complex number. Suppose that (as often is the case)
we are interested in calculating the distribution of X 4+ Y, where X and Y are
random variables. We can try to go through one of these generating functions,

and use the main property of exponentials:

E [ea(X-Q—Y)} - B I:eaXan} _ ZP[X =1z,Y = y|e e
z,y

Now, this may not be much easier than through some other route, but, in the
very special case when X and Y are independent,

P X=2Y=y|=P[X=z]P[Y =y

(by definition), and so
Mx 1y = MxMy

where M is any of the generating functions introduced in sec. 2.3. Please, note
that this handy fact only holds in the case of independent R.V.’s!

3.1 An example: Summing Independent Bernoulli Vari-
ables

Consider any number of independent R.V. X, all with the distribution



Variables with this distribution are called “Bernoulli R.V.’s”. It is easy to com-
pute all their functions (these only depend on the distribution, so they are all
equal):
Mx, () =pe!' + (1=p)e”* =14 p (e — 1)
Cx, (1) = pe™ + (1 —p) ™0 =1+p (" ~1)
Hy, (z) =(1—=p)+pz=1+p(z-1)

Now, if we add n of these independent variables, we will have (looking, for
simplicity, at the generating function only: the others are just similar):

n

Hyg x, ()= ()" = (=) 42 =30 () 9t 0=
k=0

Recalling how we reconstruct the distribution from the generating function, we

have
n n -
P> Xj=k Z(k)p’“(l—p) *
=1

This distribution is called the “Binomial Distribution” with parameters n, p,
or b(n,p). For instance, if you are playing n independent games with constant
probability p of winning, this is he distribution of the numbers of wins you score.

As an exercise (but it is obvious from the construction), you can check that
the sum of two independent R.V.’s with distributions b (n,p), and b (m, p) has
distribution b (n + m, p).

3.2 Variation: “Spin” Variables

A variation on the Bernoulli distribution (where R.V.’s take the values 0 and
1) is the distribution

PXj=1=pP[X;=-1]=1-p

This is sometimes preferred in physics, where (in Quantum Mechanics) such
variables appear naturally. As above, we calculate

Mx, (t)=pe' + (1 —p)e"=e"+p(e' —e ") =e "+ 2psinht
Cx, (t)=pe"+(1—ple ™ =e""+p(e"” —e ) =e" +2ipsint
Hx, () = (1=p)2~' +pz

Since our variables do not take only non negative integer values, we find ourselves
with a Laurent series and a pole at z = 0 for our generating function. Suspending
disbelief about the mathematical solidity of our procedure until you go through
a class in Complex Analysis, we proceed to find the distribution of the sum



of n independent such variables just as before: the corresponding generating
function will be

(T=p)zt+p2)" =) < k ) Rt (1) =

To read the formula we have to remember that if n is even, the sum can only

take even values, so both n and j will be even only and "Tij are integers, while

if n is odd, the sum, hence j, only takes odd values, and, again ”Ti] are integers.

In other words, we read ( ntj ) = 0 whenever “} is not an integer.
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Week 5 Errata

Page 2, Sec., 2.1.1

A misprint in line 11 should be obvious. It should read
“Clearly, if X takes on the values 1 < x93 < ... < xp, and xx < x < Tp41”

Page 3/4 “The Moment Problem”

It could have been written better. In case it seems unclear, the statement
means that the “moment problem” (reconstructing the distribution of a random
variable from the sole knowledge of its moments) is solvable for discrete finite
random variables (as explained there, it amounts to solving a linear system),
but is much more difficult, and possibly unsolvable (i.e., the moments may not
determine the distribution uniquely) in more general situations. As a matter
of fact, in more general situations, moments may even not be defined at all, as
we will see in the next chapter. Even when they are, though, some conditions
need to be satisfied for them to identify the distribution (for example, one such
condition is that the moment generating function exist and be real analytic).



