
Additional Proofs from Week 2

Math 394

1 Inlusion-Exlusion Formula By Indution

1.1 The Indution Priniple

The book mentions the possibility of proving the inlusion-exlusion formula by

an indution argument. Reall how the indution priniple works.

We onsider the sequene natural numbers 1, 2, 3, . . . , n, . . . and
a proposition involving a natural number (suh as the number of

items involved in the proposition), p(n). If we an show that

• p(1) is true

• If we assume that p(n) is true, then p(n+ 1) is also true

then the proposition holds for all n. As a simple example, the

famed formula

∑n

k=1 k = n(n+1)
2 an be proved by indution (besides

the onstrutive proof asribed to Gauss):

•

∑1
k=1 k = 1 = 1·2

2

• Assume the proposition is true for n, then

n+1
∑

k=1

k =

n
∑

k=1

k+n+1 =
n(n+ 1)

2
+n+1 =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 2)(n+ 1)

2

The priniple formalizes a natural �and so on� argument: if it is true for n = 1
it is true for n = 2, but then it is true for n = 3, and so on...

1
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1.2 Proof

If n = 1, the inlusion-exlusion formula is trivial. Suppose it is true for n

subsets. Then,

P

[

n+1
⋃

k=1

Ek

]

= P

[(

n
⋃

k=1

Ek

)

⋃

En+1

]

=

= P

[

n
⋃

k=1

Ek

]

+ P [En+1]− P

[(

n
⋃

k=1

Ek

)

⋂

En+1

]

=

=
n+1
∑

k=1

P [Ek]+(−1)n−1
n
∑

k=2

∑

i1<12<...<ik

P
[

Ei1

⋂

Ei2

⋂

· · ·

⋂

Eik

]

−P

[

n
⋃

k=1

(

Ek

⋂

En+1

)

]

(1)

We have used the basi formulas of Boolean algebras, as well as the inlusion-

exlusion formula for n sets. Now, we apply the same inlusion exlusion formula

to the last probability, whih involves n sets, and thus is valid by the indutive

assumption. This results in

P

[

n
⋃

k=1

(

Ek

⋂

En+1

)

]

=

=

n
∑

k=1

P
[

Ek

⋂

En+1

]

+(−1)
n−1

n
∑

k=2

∑

i1<i2<...<ik

P
[

Ei1

⋂

Ei2

⋂

· · ·

⋂

Eik

⋂

En+1

]

Plugging this into (1) we see that subtrating the last expressions adds pre-

isely the �missing terms� needed to express the inlusion-exlusion priniple

for E1, E2, . . . , En+1.
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2 The Voting Problem

Suppose we have an eletion with two andidates, A and B. Suppose A earns a

votes, and B b votes, and a > b. Suppose that ballots are ounted in �random

order�. What is the probability that andidate A be ahead of B at all times

during the ount.

Here �random order� means that, all possible orderings of the n = a + b

ballots are equally likely. Note that a given sequene of ballots is a sequene of

a + b symbols that are either A or B, suh that the total number of A's is a

(and, onsequently, the total number of B's has to be n − a = b). How many

suh sequenes are there? In total, we have as many sequenes as the ways in

whih we an pik a (or b) items out of n. As we know, that's
(

n

a

)

=

(

n

b

)

=

(

a+ b

a

)

=

(

a+ b

b

)

(2)

It is not as easy to spot the number of ways in whih the ballots for A

will always stay ahead of those for B. To this purpose, we try the following

representation of ballot sequential soring:

(b, 0)

(0, a)

(0, 0)

(b, a)

We represent ballots for A on a vertial axis, and for B on the horizontal.

Starting at (0, 0) (no ballots ounted), we move one step horizontal or vertial,

aording to the name on the next ballot. Inevitably, we will end at the point

with oordinates (b, a). In the piture, the red line indiates the points of oor-

dinates (u, u), meaning that both andidates have the same number of ballots.

The blue path is an example of a sequene of ballot reording where A is always

ahead of B: it never touhes the red line. The green path is an example of a

sequene that does not omply with this requirement.
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Sine our basi outomes (the atoms in our algebra, whih we assume to

have all the same probability) orrespond to one of these paths, we have a

representation of our sample spae as the olletion of �stairase� paths joining

(0, 0) to (b, a)1. We need to ount the paths that satisfy our ondition � let's

all the event E � but there does not seem to be a very obvious way to do this.

To get around the problem, we aim at the omplement of E, the paths that

do touh the red diagonal. Even this does not seem a trivial task, so we divide

Ec
in two subsets Ec = F

⋃

G, where F is the set of �bad paths� that start

with a vote for A as �rst ballot, and G is the set of �bad� paths that start with

a vote for B.

Looking at the paths in G, it is lear that their number is the number of

paths that start at (1, 0) and end at (b, a). But their number is then easily

seen to be given by a formula similar to (2), where now we are looking at n− 1
ballots, split into a for A and b − 1 for B (we �erased� the �rst ballot, whih,

for a path in G, was a vote for B). Hene, their number is given by

(

a+ b− 1
a

)

(3)

The next, somewhat surprising, step is the reognition that the number of

paths in F is equal to the number of paths in G, and it is based on a tehnique

that has wide-ranging sope in the appliations of probability. The tehnique

is alled the �Re�etion Priniple�

2

, and it works like this: we will realize that

there is one path in F for every path in G, and vie-versa, reating a 1-1 orre-

spondene between these two sets that, being �nite sets, have to have the same

number of elements.

1

We will meet other examples where the sample spae an be represented as a olletion

of paths. It turns out that this type of sample spae is extremely helpful in dealing with all

sorts of problems, in partiular when we onsider random experiments involving time � like

�random motions� � whih are a very signi�ant area in probability.

2

It an also be seen as a �rst simple example of another tehnique with even more wide-

ranging sope, alled �oupling� (oupling of two paths in a probability spae whose elements

are paths)
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To this end, onsider a path, say, in G, and follow it up the �rst time it hits

the diagonal (it has to, not being in E). Consider the path in F that is the

mirror image of this path when re�eted around the diagonal up to this step,

and oinides with it from then on:

(b, 0)

(0, a)

(0, 0)

(b, a)

(x, x)

In the piture, a path in F is drawn in dark blue up to its �rst hit of the

diagonal, at position (x, x). The green path is its re�etion, the �rst part of a

path in G. Form (x, x), the two paths oinide. It is lear that this onnetion

establishes a 1-1 mapping between F and G, whih have onsequently the same

number of elements.

Wrapping up, the number of paths in A will be given by the total number

of paths, (2), minus twie the number of paths in G (that is, the total number

of paths in F and G), given by (3). Dividing by (2) gives us our probability:

P (A) =
#A

#Ω
=

#Ω− 2#C

#Ω
= 1− 2

#C

#Ω
= 1− 2

(

a+ b− 1
a

)

(

a+ b

a

) =

1− 2
(a+ b− 1)!a!b!

a!(b− 1)!(a+ b)!
= 1− 2

b

a+ b
=

a+ b− 2b

a+ b
=

a− b

a+ b

that is the di�erene in the andidates respetive perentages.


