
A Quick Note on Taylor’s Formula

Some of you may not be very familiar with Taylor’s Formula, and especially
its implications. Here is a very quick statement of the formula, with an example
of how you can apply it to shorten some calculations.

Theorem Suppose f(x) is a function with m continuous derivatives at x0, a
point in the interior of its domain. Then there is one and only polynomial
Tm(x)such that

|f(x)− f (x0)− Tm(x)|

(x− x0)
m → 0

when x → x0. The k-th term of the polynomial (k ≤ m) is f(k)

k! (x− x0)
k
.

Now, this might not seem much, but what it says is that when x is very close to
x0, f(x) should look very much like f (x0) + Tm(x). Here are two well-known
examples:

1. Take m = 1. T1(x) = f ′ (x0) (x− x0). This is a linear function, increasing
if f ′ (x0) > 0, decreasing if f ′ (x0) < 0. In fact, f will behave exactly in
the same way near x0. Actually, more than that, f (x0) + T1 (x0) is the
tangent line at x0

2. Take m = 2. T2 (x) = f ′ (x0) (x− x0) +
f ′′(x0)

2 (x− x0)
2
. This is a

parabola, “open up” or “open down”, depending on whether f ′′ (x0) is
positive or negative. If f ′ (x0) = 0, the parabola f (x0) + T2(x) has its
vertex at x0, and you will recognize the familiar rule to determine max-
ima and minima. If f ′ (x0) > 0, the parabola is increasing, and hence it is
concave up, while if f ′ (x0) < 0 it will be concave down. Both facts apply
to the function f , as is well known.

3. From a general point of view, Taylor’s Theorem means that the succes-
sive derivatives of a function are the coefficients of the polynomial that

“best” approximates it (in the sense of the theorem). The point is that
polynomials are relatively easy to study and describe, and the core idea
of differential calculus is to substitute an “easily manageable” polynomial
to a function which, in general, would be much more difficult to describe.
The more derivatives a function has, the more subtle the description we
will be able to give. If all derivatives exist (such functions are called C∞),
the we can push this tool to any level we desire. This approach becomes
extremely useful when studying functions of several variables (using the
multi-dimensional Taylor Theorem).
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4. Note that C∞ is entirely different from “real analytic” (sometimes written
as Cω), that is functions that are the sum of a convergent Taylor series.
Real analytic functions are, obviously, C∞, but the converse is far from
true. While all elementary functions (meaning exponentials, logarithms,
trigonometric functions) are real analytic, there are plenty of counterex-
amples. The most famous (you will definitely meet it) is the function

f(x) =

{

e
−

1
x2 x 6= 0

0 x = 0

It has derivatives of any order at x = 0, and they are all equal to zero.
Hence, its Taylor expansion is trivial, but the function is obviously not
zero except at the origin.

There is more in this direction (at least in the case of functions of one variable1

– the case of functions in several variables is notably more complex, but also
extremely interesting), but we’ll finish on a simple application of all this to
L’Hospital’s formula (which is a bit more general, but in most cases this “Taylor”
version is good enough).

Suppose f (x0) = g (x0) = 0, and both functions have one continuous deriva-
tive. Then

f(x)

g(x)
=

f (x0) + f ′ (x0) (x− x0) +R (x, x0)

g (x0) + g′ (x0) (x− x0) + S (x, x0)

with both R and S vanishing at a faster rate than (x− x0), as x → x0. Dividing
numerator and denominator by x− x0, we easily see that

f(x)

g(x)
=

f ′ (x0) +
R(x,x0)
x−x0

g′ (x0) +
S(x,x0)
x−x0

→
f ′ (x0)

g′ (x0)

It is easy to extend this argument to the case when the first few derivatives of
the two functions are zero.

In summary, Taylor’s theorem lets us use the properties of approximating
polynomials to study the local behavior of functions that are much more com-
plicated. To this end, it is useful to remember some of the simplest examples:

• ex = 1 + x+ x2

2 + x3

3! + . . .

• log (1 + x) = x− x2

2 + x3

3 − . . .

• sinx = x− x3

3! +
x5

5! − . . .

• cosx = 1− x2

2 + x4

4! + . . .

1 For example, a remarkable fact, true only in one dimension, is that if f(k) (x0) = 0 for k =
1, 2, . . . n− 1, and f(n) (x0) 6= 0, there is a nonlinear change of variables in a neighborhood of

x0, y = ϕ(x), such that, in the new coordinates, f (y)−f (y0) =
1
n!
f(n) (y0) (y − y0)

n exactly.

The proof relies on the Implicit Function Theorem, which is a deep result in multivariate

calculus, but, once the theorem is a given, is not hard.



3

• 1
1−x

= 1 + x+ x2 + x3 + . . .

For example, you can easily see that, as x → 0

• ex−1
x

→ 1 (that is, ex ≈ 1 + x)

• log(1+x)
x

→ 1

• sin x
x

→ 1 (we knew that)

• 1−cosx
x

→ 0, 1−cos x
x2 → 1

2

and more interesting limits (all the above are essentially the computation of
derivatives).


