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1 Chapter 6

1.1 Joint Distribution Functions (6.1)

When dealing with more than one Random variable at a time, it makes sense
to think of them as a vector random variable, and use the corresponding multi-
variable language from calculus. Thus, for example, given a 2-component RV,
(X,Y ), we will think of their joint density function (we are restricting ourselves
to these nice situations), fX,Y (x, y), such that

P [(X,Y ) ∈ A] =

ˆ

A

fX,Y (x, y) dxdy

(where, of course, that is a double integral of the ’nice enough’ domain A)

1.2 Independent Random Variables (6.2)

In the very special case when fX (x, y) = g(x)h(y), the two RVs are said to
be independent. It is easy to see how this is perfectly consistent with our
discussion of independence in the discrete case. Please, check out the more
detailed discussion in the other files here. When we are talking about these
functions, we are thinking of them in their precise sense, including domain.
Thus, for example,

fX,Y (x, y) =

{

2 0 ≤ x < y ≤ 1

0 otherwise

is a legitimate density for the pair (X,Y ), but the two components are not

independent, as can be argued in any number of ways
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1.3 Sums of Independent Random Variables (6.3)

If we have a collection of RVs X1, X2, . . . , Xn, it is always true that

E

[

n
∑

k=1

akXk

]

= ak

n
∑

k=1

E [Xk]

(the expectation operator is linear). In most any other situation, linearity is
obviously absent. However, in the special case when the variables are also
independent1, it also happens that

V ar

[

n
∑

k=1

akXk

]

= a2k

n
∑

k=1

V ar [Xk]

The proof is easy: we can argue (take n = 2, and, if you want to be really
precise, use induction) that

V ar [aX + bY ] = E
[

(aX + bY )
2
− (aEX + bEY )

2
]

=

= E
[

a2
(

E
[

X2
]

− (EX)2
)

+ b2
(

E
[

Y 2
]

− (EY )2
)

+ 2ab (E [XY ]− E [X ]E [Y ])
]

=

= a2V ar [X ] + b2V ar [Y ] + 2abCov [X,Y ]

The last term has been summarized as “Cov [X,Y ]”, to follow common usage
which calls it the covariance of X and Y . Using the definition of independence,
it is very easy to see that for independent X and Y . Cov [X,Y ] = 0 (the reverse
is not true at all!). Thus for independent RVs (and, in fact, under the much
weaker condition of “zero-correlation”), the variance of the sum is the sum of
the variances.

1.4 The rest of Chapter 6

We don’t have time to address sections 6.4 and 6.5. Some comments on the
topic are in the additional material files. It is an exceedingly interesting and
useful topics, but we will have to leave it for your next probability course.

1 actually, the specific condition required is weaker – we only need the variables to be

uncorrelated – but we are not going to discuss this issue, which you will definitely address in

your next classes.
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2 Chapter 7

2.1 Sections 7.2 and 7.3

We have discussed the core of this topic in the previous section 1.3. The main
issue here is how to handle sums of independent (or, at least, uncorrelated) RVs,
in view of the next Chapter.

2.2 Normal RVs (section 7.8)

This is an obviously important special case. It has vast ramifications, but these
will have to be left to your future probability and statistics courses.

2.3 Multidimensional Normal Distributions

Even though there is, technically, not a great deal of extra work involved to deal
with this case, we will have to leave it for future developments.

Still, if you have some familiarity with conic sections – i.e., multi-dimensional
quadratic functions – the work involved here is not difficult. Basically, much
like in the 1-dimensional case, you are looking at a multi-dimensional “nega-
tive definite” quadratic polynomial in the exponent (we need the density to be
integrable).

Just looking at the exponent (and concentrate on the case of dimension 2 to
keep some visual intuition handy), you will see that the “iso-lines” (the curves
on which the exponent is constant) have to be ellipses, and, by completing the
square (plus the extra tricks involved when your ellipse has axes that are not
parallel to the coordinate axes), you can bring the exponents into a standard
form.

Also, you will notice that a linear change of variables (in fact, a rotation of

the axes), will change the exponent so that the mixed terms (in xy, as opposed
to x2, y2, x, y) disappear, and the quadratic polynomial can be written as a sum
of a polynomial in x and a polynomial in y. Since this is an exponent, the
function can can be written as a product of a density in x with a density in y.
In other words, any multidimensional Gaussian, can be transformed, via a linear
transformation of the variables, into a collection of independent Gaussians. For
example, starting from

e3x
2
−2xy+3y2+2x+2y+1

changing to new variables u = x+y
2 , v = x−y

2 (a rotation of the axes by π
4 ), we

arrive at an expression like

eu
2+2u+1+2y2

= e(u+1)2e2y
2
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3 Limit Theorems (Chapter 8)

3.1 The “Weak” Law of Large Numbers (Section 8.2)

In class, we have looked at an even (apparently) weaker result, based on con-
vergence of Moment Generating Functions (one can repeat the argument for
characteristic Functions, but to do it properly, we need a little familiarity with
complex valued functions of a complex variable). The standard proof is in the
book, and in the additional material on the web. It does provide insight, but
we’d also like to stress how the MGF proof (OK, actually the Characteristic
Function proof, but we have to make do) stresses the idea of the LLN as a
“lowest order approximation” theorem for fairly general distribution.

3.2 The Central Limit Theorem (Section 8.3)

This is such an important theorem, that we had to look at it, even if under
a serious technical limitation (we could only handle MGFs, wile the full-blown
theorem actually uses Characteristic Functions). The proof in the book is re-
peated in the additional material on line. What you might want to keep out of
the proof is the intuition that, in some sense (that can be made rigorous, un-
der appropriate assumptions), Normal distributions are a natural “first order”
approximation to “general” distributions.

The other points you should remember about this all-important theorem are

• We do need moments to be well defined for this theorem to hold (no
variance, no CLT)

• The speed of convergence to the normal distribution (whatever measure
you want to use) is never addressed in the proof. Thus, whether it is
appropriate or not to use a normal approximation to the distribution of the
sum of RVs depends heavily on the properties of the distribution of these
RVs. In particular, for heavily skewed distributions, the convergence can
be very slow, while for very symmetric distributions it can be surprisingly
fast. This is a serious issue in many statistical problems.


