Independent Events

Two events A and B are said to be *independent* if the probability of occurrence of one event is not affected by the occurrence of the other event, that is,

$$P\{A|B\} = P\{A\}$$
 and $P\{B|A\} = P\{B\}$ (*)

where $P\{A\}$ and $P\{B\}$ are assumed nonzero. An equivalent but more compact form of (*) is

$$P\{A \cap B\} = P\{A\}P\{B\} \tag{**}$$

Thus, formally two events A and B are said to be statistically (or probabilistically) independent if (**) holds. The equivalence of (*) (with $P\{A\} \neq 0 \neq P\{B\}$) and (**) can be seen as follows:

$$(2.17) \implies P\{A \cap B\} \stackrel{(2.14)}{=} P\{A|B\}P\{B\} \stackrel{(2.17)}{=} P\{A\}P\{B\} \implies (**)$$

$$(2.18) \implies \begin{cases} P\{A\}P\{B\} \stackrel{(2.18)}{=} P\{A \cap B\} \stackrel{(2.14)}{=} P\{A|B\}P\{B\} \\ P\{A\}P\{B\} \stackrel{(2.18)}{=} P\{B \cap A\} \stackrel{(2.14)}{=} P\{B|A\}P\{A\} \end{cases} \implies (*)$$

Events are said to be statistically *dependent* if they are not independent. Independence simplifies the calculation of joint probability greatly:

joint probability if independent product of probabilities

Independence of n Events

For n events A_1, A_2, \ldots, A_n , if

$$P\{A_{i} \cap A_{j}\} = P\{A_{i}\}P\{A_{j}\} \quad \forall i \neq j$$

$$P\{A_{i} \cap A_{j} \cap A_{k}\} = P\{A_{i}\}P\{A_{j}\}P\{A_{k}\} \quad \forall i \neq j \neq k$$

$$\vdots$$

$$P\{A_{1} \cap A_{2} \cap \dots \cap A_{n}\} = P\{A_{1}\}P\{A_{2}\} \dots P\{A_{n}\}$$

then events A_1, A_2, \ldots, A_n are said to be statistically **independent**. Otherwise, they are dependent.

Independent vs. Disjoint Events

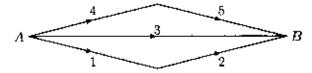
Can two events be both independent and *disjoint* (i.e., *mutually exclusive*)? Note that

$$P\{A\}P\{B\} \stackrel{\text{independent}}{=} P\{A \cap B\} \stackrel{\text{disjoint}}{=} 0$$

indicates that if two events are both independent and disjoint, then at least one of them has zero probability — nonzero-probability events cannot be both independent and disjoint. Intuitively, if two events are disjoint, the occurrence of one precludes the other and thus they cannot be independent. Note the difference:

Example 2.17: Reliability of Communication Channel

Consider the following communication network. Assume the links are independent and the probability that a link is operational is 0.95.



Since independence of links implies that paths are independent, the probability of being able to transmit from A to B can be calculated as follows:

$$P\{\text{path 1-2 OK}\} \stackrel{?}{=} P\{\text{link 1 OK}\}P\{\text{link 2 OK}\} = 0.95 \times 0.95 = 0.9025$$

 $P\{\text{path 1-2 fails}\} = 1 - P\{\text{path 1-2 OK}\} = 1 + 0.9025 = 0.0975$
 $P\{\text{path 3 fails}\} = 1 - P\{\text{link 3 OK}\} = 1 - 0.95 = 0.05$
 $P\{\text{all paths fail}\} \stackrel{?}{=} P\{\text{path 1-2 fails}\}P\{\text{path 4-5 fails}\}P\{\text{path 3 fails}\}$
 $= 0.0975 \times 0.0975 \times 0.05 = 0.000475$

Finally,

$$P\{\text{able to transmit from } A \text{ to } B\} = 1 - P\{\text{all paths fail}\}\$$

$$= 1 - 0.000475 = 0.999525 \quad \text{(very high)}$$