## Total Probability Theorem and Bayes' Rule

## Total Probability Theorem

A set of events  $A_1, A_2, \dots, A_n$  is said to be

- mutually exclusive (or disjoint) if  $A_i \cap A_j = \emptyset$ ,  $\forall i \neq j$ , meaning that at most one event can occur (if one occurs then any other cannot occur).
- (collectively) exhaustive if  $A_1 \cup A_2 \cup \cdots \cup A_n = S$ , meaning that at least one of the events will occur.
- a partition of sample space S if one and only one of the events will occur.
   Symbolically,

Clearly, the probabilities of the member events of a partition  $A_1, A_2, \dots, A_n$  sum up to unity:

$$P\{A_1\} + \cdots + P\{A_n\} = P\{A_1 \uplus A_2 \uplus \cdots \uplus A_n\} = P\{S\} = 1$$

Consider an event B in S and a partition  $A_1, A_2, \dots, A_n$  of S. Clearly,

$$B = B \cap S = B \cap (A_1 \uplus \cdots \uplus A_n) = (B \cap A_1) \uplus \cdots \uplus (B \cap A_n)$$

Since  $(B \cap A_1), \ldots, (B \cap A_n)$  are mutually exclusive, we have

$$P\{B\} = P\{(B \cap A_1) \uplus (B \cap A_2) \uplus \cdots \uplus (B \cap A_n)\}$$

$$\stackrel{\text{Axiom 3}}{=} P\{B \cap A_1\} + P\{B \cap A_2\} + \cdots + P\{B \cap A_n\}$$

But, for  $P\{A_i\} \neq 0$ ,

$$P\{B \cap A_i\} \stackrel{\text{(2.15)}}{=} P\{B|A_i\}P\{A_i\}$$

Hence, we have the following result, known as total probability theorem:

$$P\{B\} = P\{B|A_1\}P\{A_1\} + P\{B|A_2\}P\{A_2\} + \dots + P\{B|A_n\}P\{A_n\}$$

This theorem is valid for any event B and any partition  $A_1, A_2, \dots, A_n$  of the ample space S. It facilitates greatly the calculation of  $P\{B\}$  in many situations secause both  $P\{B|A_i\}$  and  $P\{A_i\}$  may be much easier to calculate than a direct alculation of  $P\{B\}$ .

~ .

Total probability theorem is often useful for the calculation of the unconditional probability of an event  $P\{B\}$  knowing various conditional probabilities of the events  $P\{B|A_i\}$  and the probabilities of the conditioning events  $P\{A_i\}$ . Intuitively, it provides a way to find an "effect" from its "causes": It calculates the probability of an "effect" (event B) from the probabilities of all its possible "causes" (events  $A_i$ 's) and the relationships between these possible "causes" and "effect"  $(P\{B|A_i\})$ .



(a) sample space partitioning and event B



(b) probability decomposition

Illustration of total probability theorem.