
Some Comments on The Law of Large

Numbers and The Central Limit

Theorem

1 Proofs using the MGF

The standard proof of the “weak” LLN uses the Chebyshev Inequality, which is
a useful inequality in its own right. However, we can also prove it by the same
method as the CLT is. While this approach has a big drawback – we have to
rely on a theorem we cannot prove here, that is the fact that convergence of
Moment Generating Functions and/or Characteristic Functions implies “weak
convergence” of the distributions – it dovetails with the CLT proof to highlight
an interesting detail.

1.1 The LLN

Suppose the i.i.d. random variables Xi have a well-defined MGF. We have
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Now, M has continuous derivatives, hence can be expanded using Taylor’s for-
mula and
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Since M(0) = 1, by a well-known basic fact, the right hand side converges, as
n → ∞ to

etM
′(0) = et·EXi

You can easily see that this is the MGF of a degenerate RV, equal to EXi

with probability one. Thus, we have that the distribution of our sum converges
weakly to the distribution of such a variable.

The statement is not quite the same as the usual LLN, but it can be proved
that weak convergence to a constant implies convergence in probability.
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1.2 The CLT

The proof of the CLT for variables admitting a MGF is on page 434-435 of
the book. Note that it is equivalent to the use of L’Hospital’s Theorem to use
Taylor’s formula. Here is a short summary.

We first change our variables to Yi =
Xi−EXi√
V ar(Xi)

. This entails that there is

no loss of generality, of course, if we assume that our variables have mean zero,
and variance 1. Hence, their MGF can be written as
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We now have
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1.3 The Point of These Proofs

As you can see, both proofs can rely on a Taylor expansion and

• The LLN corresponds to a first order expansion

• The CLT corresponds to a second order expansion

You may or may not be helped by these statements, but they do suggest that,
in some intuitive way, “expected values are a first approximation to random
variables”, and, more interestingly, “Gaussian distributions are the first non-
trivial approximation to general distributions (that have enough moments)”.

2 Why Not Use Characteristic Functions?

Actually, the “real” proofs do use characteristic functions. The problem in this
course is that characteristic functions are complex-valued functions, so that,
though we may be tempted to proceed formally as above, just plugging a “it”
wherever we see “t”, this is not quite legitimate. It turns out that the result we
would get is correct, but the proof would not be rigorous.

In short, we have to deal with powers of complex numbers, which is done
precisely via stuff like
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where φ(t) = logC(t) is the principal determination of the complex logarithm
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using the complex Taylor

formula. To deal correctly with all this, we do need some complex analysis.
Additionally, the CLT requires us to show that the characteristic function of

a N (0, 1) variable is e−
t
2

2 . While this can be proved, somewhat unintuitively,
without serious complex analysis (one such proof is in the very nice, but some-
what advanced, book by J.Jacod, P.Protter: Probability Essentials. Springer
Universitext 2000, p. 103), the usual proofs go through “contour integration” of
functions of complex variable or ”analytic continuation” of such functions.


