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Math 394

Armed with the 
on
ept of random variables, we 
an inquire about an inter-

esting question in the �gambler's ruin� (aka random walk) problem. We know

that, with probability one, the game will end when both players have limited

budgets, and we know what the probability of ea
h one winning is. But how

about the time it takes to 
omplete the game?

Hitting Time

For simpli
ity, we will 
on
entrate on the 
ase of a �fair game�, where both

players have probability

1
2 to win any given game. The general 
ase 
an be

treated similarly, but requires a little more 
are. Consider the problem. We

have a potentially in�nite sequen
e of independent games. Taking the point of

view of player one, this 
an be des
ribed as a sequen
e of independent random

variables Xi, with P [Xi = 1] = P [Xi = −1] = 1
2 � i.e., player one gains a

dollar for ea
h win, and loses one for ea
h loss. Let X1 + X2 + . . . + Xn be

the balan
e between wins and losses after n games. If player one starts with x

dollars (positive or negative), after n games her total amount of dollars will be

Sn (x) = x+
n
∑

i=1

Xi

The game ends in T steps where T is the �rst integer su
h that ST = a or

ST = b, whi
hever happens �rst. Player one wins if ST = b, and loses if ST = a.

The problem is interesting only if a ≤ x ≤ b, with T = 0 if x = a or x = b.

T is (reasonably enough) 
alled a �hitting time�, as it is the time when the

random walk hits one of two �xed levels.

Consider two questions, in order of di�
ulty:

1. What is the value of E [T ]?

2. Can we des
ribe the probability mass fun
tion of T ?
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1 Expe
ted Hitting Time

The tri
k to �nd E [T ] is very similar to the one used to �nd the probability of

win or ruin that we dis
ussed earlier. There is a slight adjustment to make, as

we are now 
ounting how many steps we will need. Note that E [T ] will depend
on the starting point x. As before, we 
onsider the two possibilities for the

out
ome of the �rst game: player one either wins (X1 = 1), or loses (X1 = −1).
Sin
e 
onditional probabilities are probabilities, we 
an 
ompute expe
tations

with respe
t to them. We will 
onsider the time it takes to rea
h one of the

two boundaries, 
onditional on starting from x, and write probabilities and

expe
tation, 
onditional on this, as Px and Ex, as shorthand (this is a 
ommon

notation in this kind of problems).

After the �rst game, we will be either in x + 1 or in x − 1, and, by inde-

penden
e, the �game starts from s
rat
h� from this point. However, one unit of

time has been used up. Thus, 
onditioning on the two possible out
omes of the

�rst game,

Ex [T ] = 1 + Ex+1 [T ]
1

2
+ Ex−1 [T ]

1

2

1

2
(Ex+1 [T ]− Ex [T ]) +

1

2
(Ex−1 [T ]− Ex [T ]) = −1

You will re
ognize that the same 
al
ulation will work at any time step. Thus,

if we de�ne

u(x) = Ex [T ]

we have the di�eren
e equation

1

2
[u (x+ 1)− u (x)] +

1

2
[u (x− 1)− u (x)] = −1, u (a) = u (b) = 0 (1)

We 
ould try to guess what a solution to this equation 
ould look like, but

to help our intuition, let's take a limit similar to the one we took in the original

gambler's ruin problem, whi
h led us to a di�erential equation. That is, let's


hange the size of the step to a small number, say h.

Now, if the steps are shorter, we need to walk faster. That is the time step

has to be
ome shorter too � no longer 1. If we 
hoose a time step also equal to

h we don't get very far:

1

2
[u(x+ h)− u(x)] +

1

2
[u(x− h)− u(x)] = −h

1

2

[

u(x+ h)− u(x)

h

]

+
1

2

[

u(x− h)− u(x)

h

]

= −1

and in the limit h → 0, if we assume u to be di�erentiable, we end up with

0 = 1, meaning the equation does not have a limit.
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Let's then try h2
. This time we are on to something:

1

2
[u(x+ h)− u(x)] +

1

2
[u(x− h)− u(x)] = −h2

1

2

[

u(x+ h)− u(x)

h2

]

+
1

2

[

u(x− h)− u(x)

h2

]

= −1

and with u(x + h) − u(x) ≈ u′(x) · h+ 1
2u

′′(x) · h2
, u(x− h)− u(x) ≈ −u′(x) ·

h+ 1
2u

′′(x) · h2
, our equation has a proper limit:

1

2
u′′(x) = −1, u(a) = u(b) = 0 (2)

(This is a one-dimensional version of the so-
alled Diri
hlet problem for a Pois-

son equation). Solving u′′ = −2 yields, as a general solution u(x) = −x2+Ax+
B, where A and B are determined by the boundary 
onditions, that is that a

and b be the roots of the polynomial, i.e.

−x2 +Ax +B = − (x− a) (x− b)

that is

A = (a+ b), B = −ab

It is not hard to 
he
k that we will get the same result if we plug a tentative

solution of the form −x2 +Ax+B into equation (1), or, equivalently, we 
he
k

that −x2 + (a+ b)x− ab solves (1).

Consider now the limit 
ase as a → −∞. This would result in the time

to rea
h a barrier of height b with no lower bound. Sin
e the solution to our

equation (2) 
an only be quadrati
, we see that there is no solution in this 
ase.

If we look at the solution

u(x) = −x2 + (a+ b)x− ab

for �xed x, it will look like a(x− b), whi
h, as a → ∞, diverges to ∞. In other

words, even though the barrier x = b will be rea
hed with probability 1 (in fa
t,


hoosing x = b − 1, it will be rea
hed in just one step with probability

1
2 ), on

average it will take an in�nite number of steps to rea
h it.

Note: Feller, in his fundamental work on the theory of probability has a tongue-

in-
heek appli
ation of this result. Suppose you are in line at a freeway

toll station, and look at the 
ars in the line besides you. If the two lines

move at random, ea
h time line 1 moving by one step with probability

1
2 , if you target the 
ar in the neighboring line one step ahead of you,

your position with respe
t to it will be a random walk just like the one

we studied. We just proved that, on average, it will take you an in�nite

amount of time to 
at
h up! Whi
h, as Feller notes, proves, as a theorem,

your deep 
onvi
tion that �I always end up in the slowest lane�. Of 
ourse,

what is really maddening is that people in the neighboring line will rea
h

exa
tly the same 
on
lusion.
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2 Distribution of the Hitting Time

Let's be more ambitious, and try to �nd an equation for the distribution of the

hitting time. That is, for example,

Px [T > t] ≡ v (x, t) (3)

The logi
 is similar to the other random walk problems we have seen. Con-

ditioning on the out
ome of the next game, we will have (we have used up one

time step)

Px [T > t] =
1

2
Px−1 [T > t− 1] +

1

2
Px+1 [T > t− 1]

With our notation (3), this is

v (x, t) =
1

2
[v (x+ 1, t− 1) + v (x− 1, t− 1)] (4)

This is a mu
h less simple equation than our previous ones, so we move to our

limit for small spa
e and time steps. We already know that for a limit to make

sense, the time steps have to be of the order of the square of the spa
e steps.

Thus our s
aled random walk will go from x to x± h in time h2
:

v (x, t) =
1

2

[

v
(

x+ h, t− h2
)

+ v
(

x− h, t− h2
)]

To �nd a limit we will subtra
t 2v
(

x, t− h2
)

from both sides, and divide both

sides by h2
, as this will 
ause familiar di�eren
es to appear:

v (x, t)− v
(

x, t− h2
)

h2
=

1

2

[

v
(

x+ h, t− h2
)

+ v
(

x− h, t− h2
)

− 2v
(

x, t− h2
)

h2

]

We have, as usual, to assume that our fun
tion v will behave ni
ely as we let

h → 0, that is assume that it has a 
ontinuous derivative with respe
t to t, and

two 
ontinuous derivatives with respe
t to x. This 
an be justi�ed after the

fa
t, if it turns out that the resulting equation has a ni
e solution (and, in fa
t,

it turns out to have an ex
eptionally ni
e solution).

If we now let h → 0, the left hand side 
onverges to

∂v(x,t)
∂t

, and the right

hand side 
onverges as well, sin
e the terms in h in the numerator 
an
el, and

we end up with a se
ond derivative:

∂v (x, t)

∂t
=

1

2

∂2v (x, t)

∂x2
(5)

Equation (5) is 
alled the Heat Equation, as it has originally been introdu
ed

to des
ribe heat 
ondu
tion. Together with the boundary 
onditions v (a) =
v (b) = 0, and an initial 
ondition v (x, 0) = v0 (x) whi
h, surprisingly, need not

be �ni
e� at all, it 
an be shown that this equation has a unique solution, whi
h

is in�nitely di�erentiable (regardless of how rough the initial 
ondition is!), but

the solution will, in general, not be expressible in 
losed form, but rather as a

series of fun
tions (in fa
t, a Fourier Series is the natural 
hoi
e here).


