
Gambler's Ruin - Part 2

Math 394

Armed with the onept of random variables, we an inquire about an inter-

esting question in the �gambler's ruin� (aka random walk) problem. We know

that, with probability one, the game will end when both players have limited

budgets, and we know what the probability of eah one winning is. But how

about the time it takes to omplete the game?

Hitting Time

For simpliity, we will onentrate on the ase of a �fair game�, where both

players have probability

1
2 to win any given game. The general ase an be

treated similarly, but requires a little more are. Consider the problem. We

have a potentially in�nite sequene of independent games. Taking the point of

view of player one, this an be desribed as a sequene of independent random

variables Xi, with P [Xi = 1] = P [Xi = −1] = 1
2 � i.e., player one gains a

dollar for eah win, and loses one for eah loss. Let X1 + X2 + . . . + Xn be

the balane between wins and losses after n games. If player one starts with x

dollars (positive or negative), after n games her total amount of dollars will be

Sn (x) = x+
n
∑

i=1

Xi

The game ends in T steps where T is the �rst integer suh that ST = a or

ST = b, whihever happens �rst. Player one wins if ST = b, and loses if ST = a.

The problem is interesting only if a ≤ x ≤ b, with T = 0 if x = a or x = b.

T is (reasonably enough) alled a �hitting time�, as it is the time when the

random walk hits one of two �xed levels.

Consider two questions, in order of di�ulty:

1. What is the value of E [T ]?

2. Can we desribe the probability mass funtion of T ?
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1 Expeted Hitting Time

The trik to �nd E [T ] is very similar to the one used to �nd the probability of

win or ruin that we disussed earlier. There is a slight adjustment to make, as

we are now ounting how many steps we will need. Note that E [T ] will depend
on the starting point x. As before, we onsider the two possibilities for the

outome of the �rst game: player one either wins (X1 = 1), or loses (X1 = −1).
Sine onditional probabilities are probabilities, we an ompute expetations

with respet to them. We will onsider the time it takes to reah one of the

two boundaries, onditional on starting from x, and write probabilities and

expetation, onditional on this, as Px and Ex, as shorthand (this is a ommon

notation in this kind of problems).

After the �rst game, we will be either in x + 1 or in x − 1, and, by inde-

pendene, the �game starts from srath� from this point. However, one unit of

time has been used up. Thus, onditioning on the two possible outomes of the

�rst game,

Ex [T ] = 1 + Ex+1 [T ]
1

2
+ Ex−1 [T ]

1

2

1

2
(Ex+1 [T ]− Ex [T ]) +

1

2
(Ex−1 [T ]− Ex [T ]) = −1

You will reognize that the same alulation will work at any time step. Thus,

if we de�ne

u(x) = Ex [T ]

we have the di�erene equation

1

2
[u (x+ 1)− u (x)] +

1

2
[u (x− 1)− u (x)] = −1, u (a) = u (b) = 0 (1)

We ould try to guess what a solution to this equation ould look like, but

to help our intuition, let's take a limit similar to the one we took in the original

gambler's ruin problem, whih led us to a di�erential equation. That is, let's

hange the size of the step to a small number, say h.

Now, if the steps are shorter, we need to walk faster. That is the time step

has to beome shorter too � no longer 1. If we hoose a time step also equal to

h we don't get very far:

1

2
[u(x+ h)− u(x)] +

1

2
[u(x− h)− u(x)] = −h

1

2

[

u(x+ h)− u(x)

h

]

+
1

2

[

u(x− h)− u(x)

h

]

= −1

and in the limit h → 0, if we assume u to be di�erentiable, we end up with

0 = 1, meaning the equation does not have a limit.
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Let's then try h2
. This time we are on to something:

1

2
[u(x+ h)− u(x)] +

1

2
[u(x− h)− u(x)] = −h2

1

2

[

u(x+ h)− u(x)

h2

]

+
1

2

[

u(x− h)− u(x)

h2

]

= −1

and with u(x + h) − u(x) ≈ u′(x) · h+ 1
2u

′′(x) · h2
, u(x− h)− u(x) ≈ −u′(x) ·

h+ 1
2u

′′(x) · h2
, our equation has a proper limit:

1

2
u′′(x) = −1, u(a) = u(b) = 0 (2)

(This is a one-dimensional version of the so-alled Dirihlet problem for a Pois-

son equation). Solving u′′ = −2 yields, as a general solution u(x) = −x2+Ax+
B, where A and B are determined by the boundary onditions, that is that a

and b be the roots of the polynomial, i.e.

−x2 +Ax +B = − (x− a) (x− b)

that is

A = (a+ b), B = −ab

It is not hard to hek that we will get the same result if we plug a tentative

solution of the form −x2 +Ax+B into equation (1), or, equivalently, we hek

that −x2 + (a+ b)x− ab solves (1).

Consider now the limit ase as a → −∞. This would result in the time

to reah a barrier of height b with no lower bound. Sine the solution to our

equation (2) an only be quadrati, we see that there is no solution in this ase.

If we look at the solution

u(x) = −x2 + (a+ b)x− ab

for �xed x, it will look like a(x− b), whih, as a → ∞, diverges to ∞. In other

words, even though the barrier x = b will be reahed with probability 1 (in fat,

hoosing x = b − 1, it will be reahed in just one step with probability

1
2 ), on

average it will take an in�nite number of steps to reah it.

Note: Feller, in his fundamental work on the theory of probability has a tongue-

in-heek appliation of this result. Suppose you are in line at a freeway

toll station, and look at the ars in the line besides you. If the two lines

move at random, eah time line 1 moving by one step with probability

1
2 , if you target the ar in the neighboring line one step ahead of you,

your position with respet to it will be a random walk just like the one

we studied. We just proved that, on average, it will take you an in�nite

amount of time to ath up! Whih, as Feller notes, proves, as a theorem,

your deep onvition that �I always end up in the slowest lane�. Of ourse,

what is really maddening is that people in the neighboring line will reah

exatly the same onlusion.
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2 Distribution of the Hitting Time

Let's be more ambitious, and try to �nd an equation for the distribution of the

hitting time. That is, for example,

Px [T > t] ≡ v (x, t) (3)

The logi is similar to the other random walk problems we have seen. Con-

ditioning on the outome of the next game, we will have (we have used up one

time step)

Px [T > t] =
1

2
Px−1 [T > t− 1] +

1

2
Px+1 [T > t− 1]

With our notation (3), this is

v (x, t) =
1

2
[v (x+ 1, t− 1) + v (x− 1, t− 1)] (4)

This is a muh less simple equation than our previous ones, so we move to our

limit for small spae and time steps. We already know that for a limit to make

sense, the time steps have to be of the order of the square of the spae steps.

Thus our saled random walk will go from x to x± h in time h2
:

v (x, t) =
1

2

[

v
(

x+ h, t− h2
)

+ v
(

x− h, t− h2
)]

To �nd a limit we will subtrat 2v
(

x, t− h2
)

from both sides, and divide both

sides by h2
, as this will ause familiar di�erenes to appear:

v (x, t)− v
(

x, t− h2
)

h2
=

1

2

[

v
(

x+ h, t− h2
)

+ v
(

x− h, t− h2
)

− 2v
(

x, t− h2
)

h2

]

We have, as usual, to assume that our funtion v will behave niely as we let

h → 0, that is assume that it has a ontinuous derivative with respet to t, and

two ontinuous derivatives with respet to x. This an be justi�ed after the

fat, if it turns out that the resulting equation has a nie solution (and, in fat,

it turns out to have an exeptionally nie solution).

If we now let h → 0, the left hand side onverges to

∂v(x,t)
∂t

, and the right

hand side onverges as well, sine the terms in h in the numerator anel, and

we end up with a seond derivative:

∂v (x, t)

∂t
=

1

2

∂2v (x, t)

∂x2
(5)

Equation (5) is alled the Heat Equation, as it has originally been introdued

to desribe heat ondution. Together with the boundary onditions v (a) =
v (b) = 0, and an initial ondition v (x, 0) = v0 (x) whih, surprisingly, need not

be �nie� at all, it an be shown that this equation has a unique solution, whih

is in�nitely di�erentiable (regardless of how rough the initial ondition is!), but

the solution will, in general, not be expressible in losed form, but rather as a

series of funtions (in fat, a Fourier Series is the natural hoie here).


