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1 The General Problem

Suppose two players play consecutive games, where player #1 as probability p

of winning any game, independently of the others, and player #2 has winning
probability 1−p = q. Suppose also that player #1 starts with a capital of c1, and
player #2 with a capital of c2. Each time a player wins one unit of the other’s
capital moves to his. In the following schematic picture, you can follow one
possible movement of c− (c1 − c2), where c is the difference in capital between
player 1 and 2, and we are setting 0 as the starting point:

The problem is to find the probability that one or the other will lose all her
capital at some point.1

2 The “Fair” Case (from T.A. Rozanov: Probability Theory:
A Concise Course, Dover)

When p = q = 1

2
, we can solve the problem as follows. Let’s look at player #1,

she starts at level c1, and she wins if she reaches a level of c1 + c2 = m before
reaching level 0, and loses if she reaches 0 efore reaching level m. We will find
the probability of ruin, as a function of the initial capital: her capital at time
0 is c1, but at every game, it is as if the match started anew, with player #1

1 This is the historical origin of this general model. If you think instead of a “particle”

moving left or right with assigned probabilities, each step being independent of the previous

ones, we have a “random walk”, also affectionately known as as the “drunkard’s walk”. You

may have heard how small variations of this model are very popular on Wall Street as models

of the stock market.
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having a capital of x, as determined by the preceding games. Let π(x) be the
probability of ruin starting with x dollars. We have two possibilities: player #1
wins the first game, and her probability of ruin is now π (x+ 1), or she loses her
first game, so her probability of ruin is π (x− 1). If A is the event “player #1
will eventually lose”), and W and L are the events, respectively, that she wins
or loses the first game, we have

P [A] = P [A |W ]P [W ] + P [A |L ]P [L]

Starting with x dollars, this means

π(x) =
1

2
[π (x+ 1) + π (x− 1)] (1)

with
π(0) = 1, π(m) = 0 (2)

It should be obvious that equation (1) implies that π(x) is a linear function,
π(x) = ax + b, and the boundary conditions (2) imply that b = 1, am+ b = 0,
i.e. a = − 1

m
:

π(x) = 1−
x

m

At the start of the game,

π (c1) = 1−
c1

c1 + c2

An interesting consequence is that if c2 → ∞ (player #2 has an essentially
limitless ability to handle losses), π(c1) ≈ 1.

Since this holds true, no matter how large (but fixed) c1 is, we conclude that
our graph (the random walk graph), will eventually plunge as far into negative
territory as we wish. By symmetry, of course, it will also climb as far into
positive territory as we wish!

3 Asymmetric Games

Suppose now that p 6= 1

2
. Instead of equation (1), we will now have

π(x) = p · π(x + 1) + (1− p) · π(x − 1) = p · π(x + 1) + q · π(x− 1)

Since p+ q = 1, we can also write

p (π(x+ 1)− π(x)) = q (π(x) − π(x − 1))

π(x + 1)− π(x)

π(x) − π(x− 1)
=

q

p

with the same boundary conditions (2). With a little induction, starting from
x = 1, and π(0) = 1, we end up with

π(x + 1)− π(x)

π(1)− 1
=

(

q

p

)x
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In particular,

π(x+1)−π(0) =
x
∑

k=0

(π(k + 1)− π(k)) = (π(1)− 1)
x
∑

k=0

(

q

p

)k

= (π(1)− 1)
1−

(

q

p

)x+1

1− q

p

(3)
We now impose the second boundary condition (2), setting x = m− 1 in (3)

π(m)−π(0) =

m−1
∑

x=0

(π(x + 1)− π(x)) = (π(1)− 1)

m−1
∑

x=0

(

q

p

)x

= (π(1)− 1)
1−

(

q

p

)m

1− q

p

and sinceπ(m) = 0

−1 = π(1)
1−

(

q

p

)m

1− q

p

−
1−

(

q

p

)m

1− q

p

π(1) =





1−
(

q

p

)m

1− q

p

− 1





1− q

p

1−
(

q

p

)m = 1−
1− q

p

1−
(

q

p

)m (4)

and
Combining (3), and (4), we finally find

π(x) = 1−
1− q

p

1−
(

q

p

)m ·
1−

(

q

p

)x

1− q

p

= 1−
1−

(

q

p

)x

1−
(

q

p

)m =

1−
(

q

p

)m

− 1 +
(

q

p

)x

1−
(

q

p

)m =

(

p

q

)m−x

− 1
(

p

q

)m

− 1

(having multiplied numerator and denominator by
(

p

q

)m

)

Summing up, we have that the probability of ruin of player #1 is

π (c1) =
1−

(

p

q

)c2

1−
(

p

q

)m

and, by reversing roles, it is easy to conclude that the probability of ruin for
player #2 is

1− π (c1) =
1−

(

q

p

)c1

1−
(

q

p

)m

(in other words, even though it would be theoretically possible for neither player
ever being ruined, this event has probability zero).
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This result has interesting consequences. Suppose c2 → ∞, while c1 stays
fixed. If p < q, clearly π (c1) → 1. However, if p > q,

1− π (c1) → 1−

(

q

p

)c1

π (c1) ≈

(

q

p

)c1

In other words, if player #1 has an advantage (e.g., she is a better player), even
in the face of an opponent of almost unlimited resources, has a fighting chance
to avoid ruin.

In yet other words, the graph we started with, describing a random walk,
would, in this case, eventually climb higher than any pre-defined bound, while
reaching a lower limit (which is random), that it will never cross down (consider
c1 → ∞), eventually climbing towards +∞.


