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Math 394

1 (Almost bullet-proof) Definition of Expectation

Assume we have a sample space Ω, with a σ−algebra of subsets F , and a
probability P , satisfying our axioms. Define a random variable as a a function
X : Ω → R, such that all subsets of Ω of the form {ω |a < X(ω) ≤ b}, for
any real a ≤ b are events (belong to F). Assume at first that the range of
X is bounded, say it is contained in the interval [A,B]. We work with X by
approximating it with a sequence of discrete random variables X(n), defined as

{

X(n) = xk

}

= {xk ≤ X < xk+1}

where A = x0 < x1 < . . . < xn = B is a partition of our interval with, for
example, |xj+1 − xj | =

B−A
n

.
We can now define

E [X ] = lim
n→∞

E
[

X(n)
]

= lim
n→∞

n
∑

k=1

xkP [xk ≤ X < xk+1]

if the limit exists.
We limit ourselves to absolute continuous random variables, so that

P [xk ≤ X < xk+1] =

ˆ xk+1

xk

fX (u) du

where fX is a piecewise continuous non-negative function, such that
´

∞

−∞
fX(x)dx =

´ B

A
fX(x)dx = 1. It is now straightforward to prove that E [X ] =

´

∞

−∞
xf (x) dx.

Indeed
∣

∣

∣

∣

∣

∑

k

xk

ˆ xk+1

xk

f(u)du−

ˆ B

A

xf (x) dx

∣

∣

∣

∣

∣

≤
∑

k

∣

∣

∣

∣

ˆ xk+1

xk

(xk − x) f(x)dx

∣

∣

∣

∣

≤

≤
∑

k

ˆ xk+1

xk

|xk − x| f(x)dx ≤
B −A

n
If,

ˆ B

A

f(x)dx =
B −A

n
→ 0

repeatedly using the triangle inequality.
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If the range of X is unbounded, we proceed as in the definition of improper
integrals over the real line, by considering an increasing sequence of intervals
[An, Bn], with

⋃

∞

n=1 [An, Bn] = R, and define

E [X ] =

ˆ

∞

−∞

xf(x)dx = lim
n→∞

ˆ Bn

An

xf(x)dx (1)

if the limit exists in the sense of improper integrals (for example by computing

separately limn→∞

´ Bn

0
xf(x)dx, and limn→∞

´ 0

An

xf(x)dx and defining the sum

as (1), as long they don’t diverge both).
Similarly, we will define E [g (X)] =

´

∞

−∞
g (x) fX(x)dx if the limit exists,

using the same argument.
Note that most of the results about expectations that we saw in previous

chapters extend to the continuous case, thanks to its nature as a limit. Thus,
for example,

E

[

n
∑

k=1

akXk + b

]

= ak

n
∑

k=1

E [Xk] + b

V ar

[

n
∑

k=1

akXk + b

]

=

n
∑

k=1

a2kV ar [Xk] + 2

n
∑

1=k<j

akajCov [XkXj]

with moments, variance, covariance, and so on defined as previously. Also, the
proof of Markov’s Inequality, and Chebyshev’s Inequality go through, as does
the proof of the Weak Law of Large Numbers.

Remark Note that we have as a consequence that E [X − Y ] = E [X ] − E [Y ],
but V ar [X − Y ] = V ar [X ] + V ar [Y ]− 2Cov [XiXj ]. In other words, we
can reduce the variance of a sum only by choosing the covariance with
care. A famous application of this principle is in financial mathematics,
where the variance of prices is interpreted as volatility, and a measure of
risk. The suggestion is then to look for investments that have negative

correlation, in order to reduce hteir combined risk.
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2 Notable Continuous Distributions as Limits of Notable
Discrete Ones

2.1 Uniform Distribution

Take an interval, for example [0, 1]. Consider the sequence of discrete uniform random
variables with distributions

P

[

X
(n) =

k

n

]

=
1

n
, k = 1, 2, . . . n

Of course,

E
[

X
(n)

]

=
1

n

n
∑

k=1

k

n
=

n+ 1

2n

and

E

[

(

X
(n)

)2
]

=
1

n

n
∑

k=1

k2

n2
=

1

n3
·
n(n+ 1)(2n+ 1)

6
=

(n+ 1)(2n+ 1)

6n2

V ar
[

X
(n)

]

=
(n+ 1)(2n+ 1)

6n2
− (n+ 1)2

4n2
=

2(n+ 1)(2n+ 1)− 3(n+ 1)2

12n2
=

(n+ 1)(n− 1)

12n2
=

n2 − 1

12n2

The limit of this distribution as n → ∞ has clearly continuous density of the
form

u(x) =

{

1 0 ≤ x ≤ 1

0 elsewhere

and such a random variable has

E [X ] =

ˆ 1

0

xdx =
1

2

E
[

X2
]

=

ˆ 1

0

x2dx =
1

3

V ar [X ] =
1

3
−

1

4
=

1

12

which are, as expected, the limits of the corresponding quantities for X(n).
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2.2 From the Geometric to the Exponential Distribution

We saw how to obtain a Poisson distribution as a limit of binomials (the “Law
of Rare Events”). In a sequence of Bernoulli trials, consider the time of first
“success”:

P [S = n] = p (1− p)
n−1

E[S] =

∞
∑

n=1

np (1− p)
n−1

=
1

p

V ar [S] =
1− p

p2

as we saw when introducing this distribution. Also,

P [S > n] =

∞
∑

k=n+1

p (1− p)
k−1

= p (1− p)
n

∞
∑

k=0

(1− p)
k
= (1− p)

n

As in the Law of Rare Events, take a time span [0, t], divide the time axis in
intervals of length 1

n
, and consider a sequence of Bernoulli trials with probability

of success pn = λ
n
. As we know, the limit of the number of wins will have a

Poisson distribution, with parameter λt. We can determine the probability
distribution of the first success (or “arrival”) T from

P [T > t] = P [Nt = 0] = e−λt (λt)
0

0!
= e−λt

This is the survival function of an exponential distribution, as can be seen
immediately.

Consistent with this, we can show that the limit of the discrete analog, the
geometric distribution, tends to the exponential one. Indeed, we would have
that

P [Sn > t] =

(

1−
λ

n

)nt

→ e−λt
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We can prove the same fact by invoking a much more powerful theorem,
that we mentioned when discussing the Moment Generating Function and its
siblings. The theorems says that if a sequence of moment generating functions
converges to a moment generating function, the corresponding distributions
converge as well (for example, in the sense that the cumulative distribution
functions converge1)

Indeed, for the geometric distribution,

MG (w) = E
[

ewG
]

=
∞
∑

k=1

ewkp (1− p)k−1 = ewp

∞
∑

k=1

(ew (1− p))k−1 =

ewp

1− ew (1− p)
=

ew

1− ew + pew

We have then, taking pn = λ
n
, that

MGn

(w

n

)

=
e

w

n
λ
n

1− e
w

n + λ
n
e

w

n

and since 1− e
w

n = −w
n
+ o

(

1
n

)

, and e
w

n → 1,

MGn

(w

n

)

→
λ

λ− w
= M(w)

Computing the standard quantities for the exponential distribution, we have
(with repeated integration by parts, based on

´

xe−xdx = −xe−x+
´

e−xdx+C)

E [X ] = λ

ˆ

∞

0

xe−λxdx =
1

λ

ˆ

∞

0

(λx) e−λxd (λx) =

E
[

X2
]

= λ

ˆ

∞

0

x2e−λxdx =
2

λ2

V ar [X ] =
1

λ2

MX(w) = λ

ˆ

∞

0

ewxe−λxdx =
λ

λ− w

(note that the integral converges only for w < λ), which are the limits of the
corresponding quantities for geometric distributions, in the setting of the Law
of Rare Events.

1 To be precise, Fn(x) → F (x) at every point x where F is continuous. In practically all

our examples, F will be continuous everywhere, so the caveat is not relevant there.
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3 From the Binomial (and many others) to the Normal
Distribution

De Moivre proved by brute calculation that a sequence of binomial distributions with
parameters (n, p) (note that p does not change), as n → ∞, looks more and more like
a Gaussian (Normal) distribution. In the more modern form, as stated by Laplace

P

[

a ≤ Xn − np
√

np (1− p)
≤ b

]

≈ Φ(b)− Φ(a)

where Φ(x) = 1
√

2π

´ x

−∞
e−

u
2

2 du is the cumulative distribution function of the standard

normal distribution, which cannot be expressed in terms of “elementary” functions.
The original proof is based on taking explicitly the limit of the binomial distribu-

tion, and applying Stirling’s Approximation

n!

nn+ 1
2 e−n

√
2π

→ 1

as n → ∞. De Moivre’s result, in somewhat modernized notation is that, for suffi-
ciently large n

P [Xn = k] ≈ 1
√

2πnp(1− p)
exp

{

− (k − np)2

2np(1− p)

}

A binomial random variable can be thought as a sum of independent Bernoulli
random variables, and, in fact, the convergence to a normal distribution holds in a
much more general setting, as was soon recognized by Laplace. The Central Limit

Theorem states that, for a sequence of independent, identically distributed, random
variables Xn, with finite variance σ2, and mean µ

P

[√
n

1
n

∑n

k=1 Xk − µ
√
σ2

≤ x

]

→ Φ(x)

This can be read in a number of ways, one of which allows a sharper estimate for
the discrepancy between 1

n

∑n

k=1 Xk and its expectation µ, than what provided by
Chebyshev’s Inequality (which, however, has broader applicability). This can also be
stated in this form: as n → ∞, adding up n independent identically distributed random
variables, with mean µand variance σ2, if their size is scaled by n (the number of terms
in the sum),

∑n

k=1
Xk

n
≈ µ, a constant (this is the verbal statement of the Law of Large

Numbers). Equivalently, 1
n

∑n

k=1 (Xk − µ) ≈ 0, that is adding many small mean zero
effects results in cancellation. If, however, we scale by

√
n their difference from µ,

∑n

k=1
Xk−µ
√

n
≈ Z, where Z is a normal random variable with mean 0 and variance

σ2. A consequence is that adding many small (but not too small) independent mean
zero effects results in a normal distribution, which is the basis for the usual theory
of random measurement errors, as well for the Maxwell model of molecular kinetics.
Another famous application is in the suggestion to diversify investment portfolios, by
combining many independent stocks, in relatively small quantities: by Chebyshev’s
inequality this should reduce their combined variance, aka volatility .

While independence can be slightly relaxed (there is a host of results generalizing

the CLT), it bears keeping its importance in mind: if the terms in the sum are sig-

nificantly dependent, the theorem fails, and ignoring this fact can (and does) lead to

serious misapplications of this basic result.


