
Examples & Complements

Chapter 4

1 Linearity

When onsidering more than one RV, we use the notation for intersetion of

orresponding events

P [X = x, Y = y, . . .]

(See the �le on independene on line). The book limbs mirrors to avoid on-

sidering more than one RV at a time in this and the following hapter, but it

atually uses the fats we are disussing here, so we might as well make them

expliit. This is not di�ult, sine we've been dealing with intersetion of events

all along.

Consider now

E [X + Y ] =
∑

k,j

(xk + yj)P [X = xk, Y = yj] =

∑

k

xk

∑

j

P [X = xk, Y = yj] +
∑

j

yj
∑

k

P [X = xk, Y = yj ]

Now, using onditional probabilities, as well as the total probabilities formula

(or just thinking how the partition {Y = yj} overs the event {X = xk}, and
reiproally for the seond term)

∑

j

P [X = xk, Y = yj ] =
∑

j

P [X = xk |Y = yj ]P [Y = yj ] = P [X = xk]

Similarly for the seond term, so that the expression is equal to

∑

k

xkP [X = xk] +
∑

j

yjP [Y = yj ] = E [X ] + E [Y ]

Combining this result with the fat that E [aX + b] = aE [X ] + b, we onlude

that expetation is a linear operator :

E

[

∑

i

aiXi

]

=
∑

i

aiE [Xi]

1
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1.1 Variane of a sum

Having de�ned independene, we ompute, in general

E





(

n
∑

i=1

Xi −

n
∑

i=1

EXi

)2


 = E





(

n
∑

i=1

Xi

)2


−

(

n
∑

i=1

EXi

)2

=

= E





n
∑

i=1

X2

i + 2
∑

i<j

XiXj



−

n
∑

i=1

(EXi)
2
− 2

∑

i<j

EXiEXj =

=

n
∑

i=1

(

E
[

X2

i

]

− (EXi)
2

)

+ 2
∑

i<j

(E [XiXj]− EXiEXj) =

j
∑

i=1

V ar (Xi) + 2Cov (XiXj)

Cov (XiXj) = E [XiXj ] − EXiEXj = E [(Xi − EXi) (Xj − EXj)] is the �o-

variane�. Note that if the Xi's are independent,

E [XiXj ] =
∑

k,l

xi
kx

j
lP
[

Xi = xi
k, Xj = x

j
l

]

=
∑

k,l

xi
kx

j
lP
[

Xi = xi
k

]

P
[

Xj = x
j
l

]

= EXiEXj

so that cov (XiXj) = 0. The reverse is false! TakeX , suh that EX = EX3 = 0,
and Y = X2

. Now E (XY ) = E
[

X3
]

= 0 = EX · EX2
.

Remark: The distribution of a sum requires more work. For disrete random

variables, we an argue as follows. Consider two random variables X and

Y with respetive probability mass funtions pX and pY . Let Z = X+Y :

P [Z = z] =
∑

k

P [X + Y = z |Y = yk ]P [Y = yk] =

∑

k

P [X = z − Y |Y = yk ] pY (yk) =
∑

k

P [X = z − yk |Y = yk ] pY (yk)

The last step is justi�ed by the fat that the onditional probability re-

dues us to the event Y = yk. We an't go any further in general, as we

need information on the onditional distribution of X, given Y = yk, for

all yk. The simplest ase is, as usual, when the two variables are indepen-

dent. If so, P [X = z − yk |Y = yk ] = P [X = z − yk] = pX (z − yk). In

this ase,

P [X + Y = z] =
∑

k

pX (z − yk) pY (yk)

The expression on the right is alled the onvolution produt of the two

probability mass funtions, in our disrete ase.
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2 The Law of Rare Events

2.1 Limit of Binomials

Assume n very large, p very small, with np = λ. Now p = λ
n
, and onsider

random variables Xn, with distribution bin(n, p). Then,

P [Xn = k] =

(

n

k

)

pk (1− p)n−k =
n!

k! (n− k)!

λk

nk

(

1− λ
n

)n

(

1− λ
n

)k
=

=
λk

k!

n(n− 1) · · · (n− k + 1)

nk

(

1− λ
n

)n

(

1− λ
n

)k
=

λk

k!
·
n

n
·
n− 1

n
· · ·

n− k + 1

n

(

1−
λ

n

)n
1

(

1− λ
n

)k
(1)

As n → ∞,

n−c
n

→ 1,
(

1− λ
n

)n
→ e−λ

,

(

1− λ
n

)k
→ 1, that is the limiting

distribution is a Poisson distribution.

Remark: This is an example of onvergene in distribution. This de�nitely says

nothing about the behavior of random variables, thought of as funtions on

a sample spae. That is, we annot say anything about possible limits of the

sequene of funtions Xn � for that matter, they may even be de�ned on

di�erent sample spaes, so that it would make no sense at all to talk about

� limn Xn�.

2.2 The Poisson Proess

Now, onsider the number of independent arrivals over [0, t], Nt. Divide time in

units of

1

n
, assume probability of one arrival in eah slot is proportional to

1

n
,

λ
n
, and of two, by independene, is proportional to

1

n2 ≪ 1

n
, so we will neglet

it (one an aount for this more preisely). In time t we have nt time slots

(if that's not an integer, we an adjust that as well, so we'll ignore this issue)

1

.

The sequene of time slots, with 1 if an arrival ours, and 0 if it does not, form

a sequene of independent Bernoulli trials, eah with parameter

λ
n
.

Then

P [Nt = k] =
(nt)!

k! (nt− k)!

λk

nk

(

1−
λ

n

)nt(

1−
λ

n

)−k

=

=
λk

k!

(

1−
λ

n

)nt
nt · (nt− 1) · · · (nt− k + 1)

nk

(

1−
λ

n

)−k

1

The book has a preise onstrution of a Poisson proess, but it may leave the deep

onnetion with Bernoulli trials less obvious.
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The limit is as before, exept

nt−c
n

→ t, and
(

1− λ
n

)nt
→ e−λt

. Thus

P [Nt = k] →
(λt)k

k!
e−λt

whih a Poisson distribution, with parameter λt.

We an now observe, intuitively, that Nt = Ns+(Nt −Ns), and that the two

random variables, Ns and Nt −Ns should be independent, as they ome from

separate Binomial experiments

2

. Additionally, sine the original Bernoulli trials

are independent, if we started from time s instead of time 0, and repeated the

onstrution up to time t, we would end up with Nt−s, with Poisson distribution

with parameter λ(t− s). But that should also be the same as Nt −Ns = Nt−s.

The family Nt is alled a Poisson Proess, and desribes things like requests

for servie from independent soures

3

, tra� �ow, arrivals of ustomers at a

ounter, et.

2.3 Using Generating Funtions

The law of rare events onerns the limit of a family of distributions. As suh

it an also be proved by using a powerful result, whose proof lies beyond our

sope.

Reall the de�nitions:

• Moment Generating Funtion. For �nite range RV's knowing enough mo-

ments determines the distribution. In general, even having all moments

(assuming they exist) may not determine the distribution. A variation

that does (when it is de�ned) is the MGF (aka Laplae Transform)

M (t) = E
[

etX
]

In general, it won't be de�ned for all t, sine we need a series to onverge

(e.g., for an integer-valued RV, we need

∑∞
k=0

ektp (k) < ∞, so the p(k)
must go to zero faster than e−k

for this to be de�ned for t > 0. If X

takes values over all integers, then p(k) needs to go down more than

exponentially fast at both ends. Obviously, M(0) = 1. Expanding the

exponential shows why the name.

• Charateristi Funtion. C(t) = E
[

eitX
]

. We de�ne eix = cosx + i sinx,

so that

∣

∣eix
∣

∣ = 1. Now

∣

∣EeitX
∣

∣ ≤ E
∣

∣eitX
∣

∣ = 1, so this is aways de�ned

(aka Fourier Transform). Both the MGF (when de�ned) and the CF

determine the distribution. Reovering the distribution from the MGF

or the CF is, in general, an advaned problem (inversion of transforms).

We'll mention other important bene�ts later.

2

More generally, given times, s ≤ t ≤ u ≤ v, it is reasonable to expet that Nv−Nu will be

independent of Nt −Ns � as it turns out to be the ase. Note that our onstrution assumes

N0 = 0, so that Nt = Nt −N0.

3

In the past, the standard example of our onstrution was the ativity of a swithboard

handling telephone alls.
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• Generating Funtion. If X takes only non negative integer values, we an

write

E
[

eitX
]

= E
[

(

eit
)X
]

= E
[

zX
]

=

∞
∑

k=0

p (k) zk

z = eit. The series onverges for z = 1, so it onverges for all z : |z| < 1.

For all of these funtions (when they are de�ned) the following useful fats hold

1. If X1, X2, . . . , Xn are independent random variables with moment generat-

ing/harateristi/generating funtionsM1,M2, . . . ,Mn, the sum
∑n

k=1
Xk

has orresponding funtion equal to

∏n

k=1
Mk

2. Given a sequene of random variables with umulative distribution fun-

tions Fk (x) = P [Xk ≤ x] and moment generating/harateristi/generating

funtionsMk, if limk→∞ Mk = M , whereM is a moment generating/harateristi/generating

funtion (there are theorems that give onditions for this to be true � for

example, it is learly neessary that M(0) = 1 for the �rst two), the there
is a distribution funtion F , orresponding to M , and limk→∞ Fk = F .

It is easy to hek that, for example, the moment generating funtion orre-

sponding to (2) is given by

∞
∑

k=0

etk
n!

k! (n− k)!

λk

nk

(

1− λ
n

)n

(

1− λ
n

)k
=

∞
∑

k=0

n!

k! (n− k)!

(etλ)
k

nk

(

1− λ
n

)n

(

1− λ
n

)k

and that this funtion has a limit equal to eλ(e
t−1)

, as n → ∞. It is also

easy to see that this moment generating funtion orresponds to the Poisson

distribution of parameter λ.

3 Complements

3.1 Some Interesting Properties of Expetation

3.1.1 Monotoniity

From the de�nition, you an see right away that

X ≤ Y ⇒ E [X ] ≤ E [Y ]

This is the monotoniity property of expetation.

3.1.2 A Useful Formula

Suppose X takes values 0, 1, 2, . . .. Then,

E [X ] =
∞
∑

n=1

P [X ≥ n]
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The proof goes like this

P [X ≥ n]− P [X ≥ n+ 1] = P [X = n]

and

E [X ] =

∞
∑

n=0

nP [X = n] =

∞
∑

n=0

n

(

P [X ≥ n]−

∞
∑

n=0

P [X ≥ n+ 1]

)

=

=

∞
∑

n=0

{nP [X ≥ n]− (n+ 1)P [X ≥ n+ 1]}+

∞
∑

n=0

P [X ≥ n+ 1]

The �rst sum is a telesoping sum, whose only surviving term is 0·P [X ≥ 0] = 0,
so we are left with

∞
∑

n=0

P [X ≥ n+ 1] =

∞
∑

n=1

P [X ≥ n]

3.2 Markov and Chebyshev Inequalities

One appliations of moments is straightforward. Compute (assuming it exists)

E [|X |] =
∑

k

|xk| p (xk)

Pik a number c and split the sum as

∑

|xk|<c

|xk| p (xk)+
∑

|xk|≥c

|xk| p (xk) ≥
∑

|xk|≥c

|xk| p (xk) ≥ c
∑

|xk|≥c

p (xk) = cP [|X | ≥ c]

The �rst term was just thrown brutally away (it's non negative), while in the

seond we minorize with c ≤ |xk|. Thus

P [|X | ≥ c] ≤
E [|X |]

c
(2)

If we have more moments

E [|X |m] ≥ cm
∑

|xk|≥c

p (xk) = cmP [|X | ≥ c]

Thus

P [|X | ≥ c] ≤
E [|X |

m
]

cm

Now, apply this to Y = X − E [X ], m = 2:

P [|X − E [X ]| ≥ c] ≤
V ar (X)

c2
(3)

whih is known as Chebyshev's Inequality. Note that the only assumptions here

are existene of moments � results apply to any distribution at all. Also, it turns

out that Chebyshev is sharp: you an exhibit an example where the equality

holds.
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3.2.1 The (Weak) Law of Large Numbers

Equation (3) has a signi�ant onsequene. Consider n random variablesX1, X2, . . . , Xn,

that have the same mean µ, the same variane σ2
, and are unorrelated (of

ourse, the usual situation will be that they are independent). Then it is easy

to hek that

E

[

1

n

n
∑

i=1

Xi

]

=
1

n

n
∑

i=1

E [Xi] =
1

n
· nµ = µ

V ar

(

1

n

m
∑

i=1

Xi

)

=
1

n2

n
∑

i=1

V ar (Xi) =
1

n2
· nσ2 =

σ2

n

Now, looking at a ountable sequene of suh variables, we have that, for any

n, using (3)

P

[∣

∣

∣

∣

∣

1

n

m
∑

i=1

Xi − µ

∣

∣

∣

∣

∣

≥ ε

]

≤
σ2

nε2
(4)

whih vanishes as n → 0, for any �xed value of ε. In words, the arithmeti aver-

age of independent variables with the same mean and variane has a vanishingly

small probability of deviating from the mean, provided we are averaging a su�-

iently large numbers of variables. This is one of the ornerstones of statistial

analysis, as it promises an arbitrarily lose approximation to the (generally un-

known) mean of a distribution, if we observe a large enough number of �opies�

of its observation. Note that (4) also allows us to alulate n so that the estimate

of µ will be lose to a given approximation, with a predetermined high proba-

bility. In most ases, this is a pessimisti estimate of n, as, if some additional

assumptions hold, we an refer to the other basi limit theorem (the so-alled

Central Limit Theorem) to get a sharper estimate for n � the nie thing about

the estimate from (4), though, is that it is valid under the minimal ondition

that the variables be unorrelated (they don't even need to be independent),

and that mean and variane are �nite (well de�ned).
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3.3 Side Comment: Expetation of Absolute Value is

(Apparently) Stronger

Assuming that E [|X |] exists an be thought as being stronger than assuming

that EX exists. It's very muh the distintion between simple onvergene and

absolute onvergene. As an arti�ial example, onsider a RV taking positive

odd integer values and negative even integer values with

P [X = 2k − 1] =
6

π2

1

2k − 1

P [X = −2k] =
6

π2

1

2k

Thus

EX =
6

π2

∞
∑

k=1

(−1)
k−1 1

k
(5)

whih is onvergent (see the following subsetion 3.3.1 for a reminder of the

proof), while the orresponding series for |X | is a divergent harmoni series.

However, it is not a good idea to make this distintion. More preisely, if a

onvergent series does not onverge absolutely, it onverges onditionally, whih

means that by reordering terms, we an fore it to onverge to some di�erent

limit, or not onverge at all. This is learly the ase for our example: if we �rst

sum all positive terms we have a divergent series, and similarly if we sun the

negative terms. By leverly onneting the ways these two sub-series diverge,

we an fore onvergene to any limit we want. While this might not seem a

big problem, it does make suh �ontingent� expetations a lot less useful.

The reasonable way to handle this issue is the following. We'll state it, more

generally, for the expetation of f (X). We �rst de�ne the positive and negative parts

of f :

f
+ :=

{

f wherever f > 0

0 elsewhere

f
− =

{

−f wherever f < 0

0 elsewhere

so that f = f+ − f−
and |f | = f+ + f−

. We then onsider E
[

f+
]

and E
[

f−
]

separately. If they are both �nite, we de�ne E [f ] = E
[

f+
]

−E
[

f−
]

. If one diverges,

and the other does not, we may de�ne, if we wish, E [f ] to be positive or negative

in�nity, depending on whih the divergent part is. If both diverge, the expetation

is unde�ned, even if we allow in�nity as a valid expetation. Our example mathes

the last ase. With this onvention f and |f | have or don't have an expetation

(�nite or in�nite) simultaneously. This de�nition allows the extension of the notion

of expetation to muh more general ases (even more general than the ones we will

onsider next).
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3.3.1 Leibniz Criterion

Convergene of the series (5) an follows from a result named after Leibniz.

Theorem If a0 ≥ a1 ≥ a2 ≥ . . . > 0, and ak → 0. Then the series

∑

∞

k=0
(−1)kak

onverges.

A proof an go like this. Consider the partial sums from 0 to 2n + 1 S2n+1 =
∑

2n+1

k=0
(−1)kak. Then,

S2n+1 = a0 − (a1 − a2)− (a3 − a4)− . . .− a2n+1 ≤ a0

sine all sueeding terms are negative. Hene, the sequene is bounded. Also

S2n+1 = S2n−1 + (a2n − a2n+1) ≥ S2n−1

so that the sequene is inreasing. A bounded inreasing sequene has a limit, so that

S2n+1 → s for some number s. Looking now at the sequene of sums from 0 to 2n, we
have

S2n = S2n−1 + a2n

Taking limits of both sides,

lim
n→∞

S2n = lim
n→∞

S2n−1 + lim
n→∞

a2n = s+ 0 = s

All in all, Sn → s.

In our spei� ase, the proof above an be made slightly more expliit. Consider

the sums up to 2n. Then

π2

6
(S2n − S2n−2) =

1

2n− 1
−

1

2n− 2
=

2n− 2 + 1− 2n

(2n− 1) (2n− 2)
= −

1

4n2 − 5n+ 2

Hene,

∑

2m

n=1
(S2n − S2n−2) = S2m is onvergent. A similar argument shows that

S2n−1is onvergent, and sine S2n+1 − S2n = 6

π2

1

2n+1
→ 0, the limits are equal.


