
Pairwise vs. Three-way Independence

This is a very classic example, reported in any book on Probability:

Example 1. We throw two dice. Let A be the event “the sum of the points is 7”, B the event “die #1

came up 3”, and C the event “die #2 came up 4”. Now, P [A] =P [B] =P [C] =
1

6
. Also,

P [A∩B] =P [A∩C] =P [B ∩C] =
1

36

so that all events are pairwise independent. However,

P [A∩B ∩C] =P [B ∩C] =
1

36

while

P [A]P [B]P [C] =
1

216

so they are not independent as a triplet.

First, note that, indeed, P [A ∩ B] = P [B ∩ C] =
1

36
, since the fact that A and B occurred is the same as

the fact that B and C occurred.

Example 2. Another example is the case of Ω consisting of four equally likely points, a1, a2, a3, a4. Let
A= {a1, a2}, B= {a2, a3}, C = {a3a1}. The three are not independent, but they are pairwise.

However, it is also true that, as long as we consider only specific events (that is, we don’t take into consid-
eration their complements, or, more generally, other members of their algebra), that mutual (3-way) inde-
pendence does not imply pairwise independence!

Here is a somewhat trivial example:

Example 3. Let P [A] = p, P [B] = q, P [A∩B]� pq, P [C] = 0 then, trivially,

P [A∩B ∩C]6P [C] = 0, andP [A]P [B]P [C] = 0

but A and B are not pairwise independent.

A less trivial example is the following:

Example 4. Consider the toss of two distinct dice. The sample space is partitioned into equally likely
events of the form (i, j), where i and j are the points on the first, respectively second die. Obviously,
P [(i, j)] =

1

36
. Now, consider the three events

A1=
′′ i=1, 2, or 3′′ A2=

′′ i=3, 4, or 5′′ A3= i+ j=9

1



We have

A1∩A2= {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}

A1∩A3= {(3, 6)}

A2∩A3= {(3, 6), (4, 5), (5, 4)}

A1∩A2∩A3= {(3, 6)}

We have the following probabilities:

P [A1] =P [A2] =
1

2
, P [A3] =

1

9

P [A1∩A2∩A3] =
1

36
=P [A1]P [A2]P [A3]

but

P [A1∩A2] =
1

6
�

1

4

P [A1∩A3] =
1

36
�

1

18

P [A2∩A3] =
1

12
�

1

18

Note, referring to Example 2, that P [Cc] = 1, so that P [Cc ∩ A ∩ B] = P [A ∩ B] � 1 · p · q, so that consid-
ering the complement of one of the sets makes the new triplet dependent. Similarly, referring to Example

3, P [A3
c] =

8

9
, and

A1∩A2∩A3
c= {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5)}

which has probability
5

36
�

1

2
·
1

2
·
8

9
=

2

9
. Note that this fact does not apply to pairs of events:

Fact: If A is independent of B, then so are, pairwise, Ac and B, A and Bc, and Ac and Bc. That’s
because, for example, P [A ∩ Bc] = P [A ∩ (Ω\B)] and P [A ∩ (Ω\B)] + P [A ∩ B] = P [A], so P [A ∩ Bc] +
P [A]P [B] = P [A], hence P [A ∩ Bc] = P [A] − P [A]P [B] = P [A](1 − P [B]) = P [A]P [Bc]. Similarly for the
other cases.

This points to a better definition of independence of multiple events:

Theorem: Suppose events A,B,C satisfy the conditions

P [X ∩Y ∩Z] =P [X ]P [Y ]P [Z]

where X, Y , Z are, respectively, A, or Ac, B, or Bc, and C, or Cc. Then they are also pairwise indepen-

dent. The result extends to any finite collection of events, in an obvious way.

Proof: We can write P [A∩B] =P [(A∩B ∩C)∪ (A∩B ∩Cc)] =P [A]P [B]P [C] +P [A]P [B]P [Cc], because
the two parts are disjoint. This is equal to P [A]P [B](P [C] + P [Cc]) = P [A]P [B]. All other cases are
treated in the same way.

Remark: Checking all intersections of the sets and their complement can be seen as checking indepen-
dence of all couples built from the minimal algebra generated by each of the events , which, for an event A,
is the collection {A,Ac,Ω, ∅}. Of course, trivially, Ω, and ∅ are independent of any event.

While some scholars have looked at the taxonomy of events that are k − independent, but not h − inde-
pendent for h < k, this is not a very exciting subject, since, in considering independence and, more gener-
ally, conditional probabilities, it is much more significant to look at all events in the algebras the events
belong to naturally - at the very least the ones generated by each event and its complement.
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