Ungraded Problems Assigned in Week 7 (Chapter 5)

Math 394
#3

The scheme is exactly the same as in problem 1: we need to make sure that the
function is nonnegative, and integrable, Now

2r—a° =0

if r = 0and #* < 2, ie., in [{}. v’? Since -_;- =~ /2 this is not a candidate for
probability density.

Similarly,
2r—x? =0
if 00 < x, and 2 > x. But _% = 2.5 = 2 and this function is also not a suitable
candidate,
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Here, we use the formula
EX = -[ xfylx)dr

which is meaningful only if = fx is an integrable function (for instance, a density
of the form — for xr > 1, with suitable ¢, would be indeed a density, but it
would have no expected value, More to the point, the Cauchy distribution
(with density of the form ——=), which appears in several applications, also
has no expected value),

a First, note that f is indeed a density function (it is a member of the family
of so-called “Gamma” distributions) :

[“ %.n'_'i'ff.r = % ([—QJ.'P_%].:L + 4) =1

0
Ll

To compute FX, we calculate

- ]- i v e
/ rflx)dr = —f rYe Tdr
e 1 0



by integrating by parts twice. To streamline the caleulations, it doesn't hurt

to remember (from the exponential distribution - ef. p.209 in the book)
that

f ke 5 dr =1, f kre ® dp =
it 0

It follows that X = 4

ol Wo

== . ) 2
krle Fody =
/ e

b We already saw in problem 1 that ¢ = 41 Az for the expected value,

3 (! ; 3 [«2 2?]'
E."(=—f (l—at)de=2|=-Z| =0
4/, 412 4]

Of course, this could have been seen immediately, since we are integrating
an odd function (flx) = —f{—x)) over an interval symmetric around 0.

¢ First of all, this function is a density, since

[ =[], -

but it has no expected value: = - F" = % is notoriously not integrable at
+oo I[_flx %rl_r: =log X — ocas X — o).
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H#7

A we noted in problem 1, a density function has to satisty = 0, and fj:__ fdr =

1. The last formula provides one relation to determine the missing constants,
To determine both we need another relation, and that's provided by the value

" OO0 . a
of [ _ xfdr. We have two equations in two unknowns a and b

b

1
f (o + F;I::E;'I dr=an+==1
8]

[

1
f z (a+ F;.'rg} dre=2 +

0 2 ;

] =
I
Bl

Solving this simple system gives a = -::- b= 1.:-

#9

Let's go to example 4b on p. 130 of the book., Recapping, we consider

a random wvariable X representing the number of units of a product seld by a
department store that has to stock them in advance!, Suppose a stock of s has
been ordered. Then a profit of b per unit sold, and a loss of [ per unit left unsold

I'The boak, mysteriously, talks about X as the amount of units “ordered”, rather than
sold. Maybe they were thinking of a mail-order only store, but it sure makes for a confusing
discussion. In any case, equation (1) (which s also the equation at the bottom of p. 134)
makes clear what this is all about.



i recorded.  Incidentally, we are not considering “virtual losses", due to
missed sales because of insuflicient stocked items that cause some demand not
to be satisfied. The equation is then (ef. the first equation on page 130), calling
the profit, a function of s, Pls),

P(s)=b(snX)—(s— X)"1I @)

(we introduced a couple of common notations: a A b = min (a, k), and

= 1
at = { :; :: o T omax {az, 0}

to shorten the writing),
Now, the expected profit is

EP(s)=bE[snX|—1E(s— X)" (2)

and some care is needed, since neither function of X is linear!

As you may guess by looking at the discrete variable solution on p. 135, the
trick is to break up the expectation in two parts, depending on whether = < X
or not. Equivalently, we could introduce two RVs

Y =sAX:Z=(s—X)"

and write down their densities (actually, they are “mixed” random variable: they

talke a specific value with a positive probability, while the remaining values are
continuous:

PlY=s|=PX=2s:PZ=0=P[X =4

and a density elsewhere) while, conditioning on X < s, we have a (conditional)
density, the density of X, sultably normalized.

There are tricks to represent even the distribution of discrete RVs in terms of
“densities” (recall that some books refer to the pmf of a discrete RV as a “discrete
density”). This is done in a handwaving manner by introducing the so called
“f—function” (which is not a function at all) & (x — a), where ¢ is characterized
by the property that, for any continuous function,

-/‘. fle)d oz —a)lde = fla)

which is sometimes "explained” in physics and engineering books by stating that
dis “equal to zero everywhere, except at o, where it is infinite” (there are rigorous
mathematical ways to define such an object - as a Schwartz “distribution™ - no
relation with probability distributions, of course - or as a measure, or as a linear
functional on an appropriate function space - all the preceding terms are, in a
sense, equivalent or closely connected), Hence, a pmf py, pa.....p,, for values
Ty.r3, ..., 1, can be written (formally) as

flz) = Z,Ta'kd'{-f-' —xp) (3)
k=1



This is only meant to show that the following solution for the problem,
assuming X is a continuous RV, applies to the discrete (or even mixed) case as
is, using the formal trick of equation (3).

We compute the expected values in (2):

ElsnX]=3sP[X = s+ /-“ xf (x)dz
0

(here f is the density of X)

E [{s - }:f] _ fn (s— ) f(z)dx

so that the expected profit is

hsP [X = 5] + hf zf (z)dr — IsP[X < 5] + {f af (x)dr

0 0
Let’s derive this expression with respect to s (noting that P [X > s| = 1— F (s),
and [X < s| = F (&), where F' is the odf of X, and that £’ = f):
b(l—F(s))—bsf(s)+bsf(s)—IF(s)—lsf(s)+1sf(s) =
=b—(b+ 0 F (=)
which is zero for any = such that

. b
Fis") = T (4)
Note that there could be more than one 5%, if the function F happened not to
be strictly monotone. However, for instance in the discrete case, only the left
endpoint of the interval of s satisfying (4) would have physical meaning (if you
are counting single units, you cannot sell “2.45 single units”). This has been
expressed as an “ineguality” condition in the solution to the discrete problem

#10

a We have a density function

1 T=t=<8
fo U}={ (1 otherwise

for the arrival time of the passenger, The passenger will take the train to
I if he/she arrives between 7and 7: 05, 7: 15 and 7 : 20, and so on, up to



7:45 to 7150, for a total time “window” of 20 minutes. If he/she arrives
in the remaining time intervals, the “winning” train goes to A, and that
is over a total “window™ of 40 minutes. Hence, the probability of going to
Als % = % Incidentally, the probability of the passenger catching the
train that leaves at 7:00 is zero, since {[:J fplt)dt = 0.

b At first, we have § minutes of opportunity to get the next train, which now is
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the one going to A, After this initial period, the passenger has again 10-
minute windows to catch a train to A, alternating with 5-minute windows
to catch a train to I3, and, if late, will catch the §:00 train to 4. Hence the
percentage for the two destinations is the same as before: the probability
of going to 4 is %

This type of problem works by recasting the question in terms of a standard
normal distribution, and then going to the tables. Thus,

F':."f = lr:: =P

X - FX o— X

 Var | X - W Var [ X

PFZ::i—ﬁ]
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=Plx—fx c—12

e
3 Viar [ X Ny

where 7 is a standard normal, Reading tables in reverse, we find out that

P|Z > z4] = .10

where z; = 1.2816. Hence,

423

% — 79816

o= 14.5652

The number § appears with probability %, thus the number of appearances over
n throws is a binomial with parameters .'r..'i If X is this random number,

S

L
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is approximately a standard normal. For n = 1000, 150 < X < 200 if

150 — 40y loon o) - o0
—— T ——— [
V"M .5 0 5 {1000

'} [i] (5 -

Voo T VoW

i

900 — 1000 X - @ - 1200 — 1000

/B0 = \,f oo 5 v/ 5000

[ ti




where Z is (approximately) a standard normal. Since
P [— V2< Z < aﬁ] — 91091

this is the requested probability?.

On the other hand, if § appeared exactly 200 times, the remaining 800 throws
were divided between the remaining 5 possible outcomes. Out of §00 throws,
the number of 55 (conditional probability =) Vv satisfies

' Y —800-%  TA0 — 800
PlY <150] = P | ——8 < - B
| v"#..n{}- 1.4 2. /R0
P [z < 18838
- 142 n ’

Remark The solution manunal suggests to caleulate P [149.5 < X = 200.5], in-
stead of what we did above, ie,, P[150 < X < '2[![1:. This is a homage
to a practice (sometimes called “smoothing”) that purports to take into
account the fact that we are approximating a discrete distribution with a
continuous one, by, somehow, interpolating by halves between the “really
possible” values, This practice is not completely justified, In fact, if the
number of trials is too small to invoke the Central Limit Theorem straight,
it is unlikely that this correction will go in the right direction anyway, If
the number of trials is adequate (and for a binomial distribution, with p
not too close to () or to 1, such a number is really low), there is simply no
point in doing so, since ?:T will in any case be of little relevance. Also,
since we are doing an approximation anyway, it doesn't make too much
sense t0 push the number of significant digits too far, which additionally
makes the correction more a matter of whim that a sound mathematical
need,
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You might recall the following fact: for any RV X, the number m that minimizes
the function ¢ (m) = E {(X — m)ﬂ is m = FX. This is easily proved, by just
expanding the expression, and observing that a parabola concave up is lowest
at its vertex. This can be expressed by saying that “the number that minimizes
the quadratic expected cost is the expected value”’, and provides a connection
between the variance (and the idea of “quadratic cost”), and the expected value.

Another way of “measuring cost” is the one put forward here: minimize the
expected absolute value of the error, instead of its square. Let’s try to answer
the question for a general continuous distribution (the argument for a discrete
distribution is even more straightforward): let X have density fx, and cdf Fy.
We look for a number a that minimizes

o0

w@=mw—w=/'u—ﬂhWMx

— 00

Due to the absolute value, there is no way we can solve this by deriving with
respect to a - which illustrates why it is so much nicer to work with quadratic
costs! By definition,

r—a xT>a
o al = {

a—z x<a

so that

oo

v@= [ -0 fx@det [ @0 fx @ -

oo a

:a(/_;fxdm—/aoofxdm) — (/_;xfxdx—/:oxfxdm)

This expression we can derive with respect to a in an easy way:
' (a) :/ fde—/ fxdx +2afx (a) —2afx (a) =

Fx (a) = (1 = Fx (a))

and this is zero when
2FX (a) =1

Fx(a):P[Xga]:%

This value is called the “median” of the distribution (it represent the value for
which X has probability 0.5 of being either lower or higher), and it is often used
in describing empirical data (e.g., newspapers will report the “median price of
housing”, the “median income”, etc. in a given area).

For our specific questions, we thus have that

14



a a is the median of the uniform distribution on [0, A], and it is obvious that
A

GJ:E

b a is the median of the exponential distribution, and this is the value such

that
P[X <a|=P[X >a]=05
i.e.
e =105
1
—da=1 -
a = log (2>
log(2
a= og/\( ) =7 -log(2)

Note the connection between a and the expected value 7 = % It is the
median that is often called “the half life” of a radioactive material, whose
decay law is assumed to follow an exponential distribution. It is almost
the same as the expected value, up to a factor of log(2) = .69315.

Of course, we obtain the same result if we work directly with the given distri-
butions, without referring to the general result.

a We look for ¢ that minimizes

1/1(a)=/0A|x—a|%dx:%(/Oa(a—a:)dat—&—/aA(x—a)dx> =

1/, a A% — g2 1 (A2 9

which, as a function of a, is a parabola, concave up, with a minimum at
A

its vertex, i.e. at a = —‘TA =%

b We now look at minimizing

/ Mz —ale dx = A (/ (a —x) e Mdx + / (x —a) e”dm) =

0 0 a

=\ (a (/ e Mdx —/ e”dm) — (/ xef)‘zdx—i—/ xe”dm))
0 a 0 a

Multiplying throughout the first factor A, we get

a— % (1 - Qe*Aa)

(we have used the cdf of an exponential, 1 — e~**, as well as integrated
by parts the terms of the form

/C re Mdy = {Xxe_’\x} ) + X/c e Mdy =

15



1 —Ae —Ad 1

= — (o™ —de™ ™) + —
= )+
substituting appropriately).

This function of a will be minimized at 1 + 2% = 1, or a = 252

H—)u' _ .__._—Jl.r.ﬂ}

436
A distribution with hazard function h(t) is such that
P [X = i’] _ ﬁ—h[!]

hence in our case,

o4

a PIX >2)=e Lo — o3 — o-4 = 18316

0.4 . Ld 4 F F
b Plde X < 14]=e do U0 _om S0 Lot L G0ss

2 3
¢ P[X >2(X >1] = prag = e ST vt oasis

437
As usual, let’s be careful with absolute values,

a P[IX|>3]=P[X>1]+P[X<-}]=2

| =
(=1

b To find the density, we can proceed in several ways. Let’s, for instance,
compute the cdf (obviously, Fy = 0 for = < (), so we restrict to = = (0):

1
P[|X|£2‘]=P[—.‘r£x¢_i_r:]=f Eda‘.=_r:

Hence, | X | is uniform on [0, 1].



Theoretical Exercises

#1

This is, really, a Calculus exercise. We are enforcing

0
/ azle P =1
0
The following method relies on the identity I’ (%) = /T which you may be familiar with, or
not (it is proved on page 199 in the book), and the property of the Gamma function (see page
215): I'(zx) = (z — DI'(z — 1)
Taking this identity for granted, we can use substitution, namely z? = u, to transform the
integral into \
0 - o0 3]
a \/by%e—budu — CLF(%)/ b(bu)2 _—bu
2) Vb Wb/, T@)
From the definition of the Gamma distribution (on page 237), we know that the integral is equal
to 1 (read b as A in the formula). Hence, we have

3
A
b’ _
T
which, using the fact that I" (%) = %F (%) = \/7 results in

#2

Following the hint, we have (for absolutely continuous random variables)

00 0 00
ElY]= / yfy(y)dy = / yfy(y)dy + / yfy(y)dy
—00 —00 0
Integrating by parts both integrals results in

wE ), - [ Fyy

—00

where F'y- is the cumulative distribution function of Y. To prove the assertions we only need to
observe that the integral is precisely the right hand side of the equation (when a density function
exists, the definition of cumulative distribution function in terms of <or < makes no
difference), and that, in order for the expected value to exist, the first term in the expression has

o0
to be zero (that is equivalent to the requirement that the integral / yf Y(y)dy exist!)

—00

#3

The hint shows a pretty straightforward path. A less rigorous argument (that can, however, be
extended to more general situations, once the necessary technicalities are settled) could go as
follows.

18



Let X'be a continuous random variable. We approximate it by X ,,, where the range of X has been

“cut up” in small segments [a o> O +1>= of length %, and X,, = a;, for all outcomes such that

a, < X < ay, ;. We now have a discrete random variable, and we have, from Chapter 4
Elg(X,)]= Y g(a)P[X, = ay]

k
Opt1

By the fact that P[X,, = a,] = f(z)dx, and that the right hand side is now, essentially, a
ay,

Riemann sum for our “target" integral, as n — oo, we have our proof.

Remark: the argument would work for any random variable X, if we had a rigorous method for

passing to the limit in Z g(a)P[X € [ay, ay, )| even when the distribution does not admit a
k

continuous density. In fact, we would need to extend our definition of integral, in order for this to
work, and that is precisely what the Lebesgue integration theory does for functions if a real
variables, and general measure theory does for more general situations (recall that our X has an
abstract space, the sample space, as its domain).

#5
Let’s follow the hint;

which proves the statement.

#6

This problem has a simple answer: choose E, as the event when X is not equal to a. It is not
such a surprising example, as we are dealing with an uncountable intersection. In fact, if you
take complements, the condition requires that the union of the complements of these sets (each
having probability zero) have probability 1. This can obviously happen only because we are
dealing with an uncountable collection of events.

This example reminded me of a different, more surprising, one, which you might feel has some
relation to it (or maybe you won'’t feel that way - no matter: it is an interesting example, and it
has big implications in unexpected areas, like celestial mechanics).

Consider the set of rational numbers, say, between 0 and 1. Since they are a countable set, we
can write them up as a sequence, say, 7y, 79, T3, ... This is a dense set in [0,1]. Now, consider the
set made up of the union of intervals of amplitude 2% around r,,, for a small €. The total

probability associated with these intervals is less than or equal to the sum of their amplitudes,
which is equal to € Z 2% = ¢. This is surprising, because ¢ can be as small as you wish, but the
n

sets we are talking about are all open and dense, so that, in a topological sense, they are “big”.
The intersection over a sequence of such sets, as ¢ — 0, will have probability zero.
Topologically, though, it will be the intersection of a countable number of open dense sets - this
is called a “second category Baire set”, which, again, topologically is thought to be a “big” set
(the intersection of second category Baire sets, is, again, a second category Baire set). The
conclusion of this example is that “probabilistic” (or “measure theoretic”) size is very different
from “”’topological” size.
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#10

We don’t need to be this lazy, but, thanks to a quick change of variables (it is a standard one:

T i— 7\/\/ E(X 59 ), we might as well prove that f(x) = e~ has an inflection pointat |z | = 1.

Since the second derivative of f(z) is (:v — 1)6_7 this is pretty obvious

#15

A simple way to show this is to evaluate
PlcX >z]=P[X >Z|=e M=

#16

The hazard rate for an absolutely continuous random variable X is defined as the density
P Xedx | X . . . )
formally defined by (X € dg;| > 2] , which, with a little care, can be seen to translate, in the
fx(@)

1-— FX (.’17) ’
(section 5.5.1). It is a very intuitive tool in survival and reliability theory. For a uniform variable
on [0, a] (notice that, for distributions with a continuous density, it makes no difference if we
consider open, closed, semi-open, etc. intervals), this translates to

1

a _ _1

Gt—a—2
Not surprisingly, it explodes as x approaches a: after all our gadget has to fail at some point

,"

between 0 and a, and as we approach the end of the interval “time for failure is running out™!

case of absolutely continuous random variables, into as discussed on page 234

#23
The density of a Weibull distribution can be defined from
R(t)=P[X > t]= e

(In reliability/survival analysis we will always have ¢ > 0). While there are approximating
argument to justify this choice, the most obvious reason is seen by comparing with the
exponential distribution, where

PIX >tl=e®
As the question implies, choosing values of b less than, equal to, to greater than 1, corresponds to
having hazard rates that are decreasing (a “rejuvenation” effect), constant (“memoryless”), or
increasing (“aging” effect). Thus, the Weibull family provides an easy toolbox for a quick and
dirty description of the different age-related scenarios for the likelihood of an upcoming failure.
The hazard rate calculation is an exercise in derivation:

b
f@®)  —R'(t)  dlogR(t) d(—‘“ )
Rt)  R() at dt
The conclusion about the different behavioras b > 1, b = 1, b < 1 follows now easily

— abt?!
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#27

The cumulative distribution function for Xis P[X < x] = H. Let’s define Y = a X + (.
Since aa + B <Y < ab+ [, we need to make sure that ca + 8 = 0, and ab + 3 = 1. Thus,

we want o = ﬁ, 6= a a_ b Checking, for example, the cumulative distribution function
will confirm this is he right choice:

P[Ysm:P[Xs#}zp[xm—m—b)y]:y

(for 0 < y < 1), by directly substituting.

#29

Note that /' is a monotone increasing function. Since we are assuming that it is strictly monotone
increasing function (and, one could be careful and extend the argument to the non strictly
monotone case), it has a proper inverse rt (in the non strict case, one can use the “right
inverse”). Then,

PIF(X) <y)=P|x <Py = F(F ) =y

This observation is sometimes used to simulate a random variable with a given distribution
function, starting from a program that simulates a uniform random variable: starting from a
uniform random variable Y, the random variable X = F _l(Y) has distribution function F. This
method is easy, whenever F has an easy inverse e.g., for exponential variables, but not for
normal variables), but has its own numerical pitfalls - for example, simulating an exponential
variable requires the computation of a logarithm, which is computer intensive, as well as less
precise than algebraic calculations.

#31
We can compute the probability density function in various ways. A plain route is the following:
ogy 2
X B B 1 _ @)
Ple §y]—P[X§10gy]—m/ e » dx

Taking the derivative with respect to y, we obtain
_ (ogy—p 2
_€e
This choice for stock price modeling has the advantage of simplicity, since the logarithm of the
random variable has a convenient normal distribution, but it does have a number of drawbacks.
One that got a lot of attention in the wake of the recent financial crisis is its lack of “fat
tails” (outliers are very unlikely), but there are other concerns as well as to its appropriateness.
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