Math 394

Solutions to Homework Assignment

Problems from Chapter 5

Part I
Assignment Problems

#1 (C)

The point of this problem is that a (nice) function f can be considered a prob-
ability density if (and only if)

1. f(z) = 0 for all =

2. [7_ f(z)dz =1 (if f is defined over, say, and interval [a.b], it just means
that it is taken to be identically equal to 0 for = outside that interval)

In this case, we have

1. 22> 1when -1 <z <1

2.
/: f(@)da = /_llc(l -a*)dr = [ ( - T)] -
b () 2) o

This will be equal to 1 if ¢ = 2.

The cumulative distribution function is now easy to calculate. Since —1
X <1,

e Fy(z)=0forz<—1

e Fylx)=1forz =1

e For -1 <o <1,

Fx (J~)=P[.\’§J:]=/xrf(t)dt:/! 3

‘I(l —fz)dt =

-1
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Looking back at the determination of ¢, with a question like this, you will be
given a density in the form of an unknown constant multiplying an explicit

function, as in
flx)=c-g(x)
where g(x) = 0. To determine ¢, you will then evaluate the number f_+: g(x)dr =

K (which must be finite for the problem to have a solution). For f to be a den-

sity, we will then need ¢ = AL



Of course, for this method to work, g(x) must be nonnegative, and integrable
over the whole line! This is no different from the similar situation with discrete,
but not finite, RVs: a given sequence of numbers a; : i = 1,2,... can be used
to define a probability distribution, if a; > 0, and Y ;2 a; = a < oco: the

= 95

probability distribution is then given by the sequence p; = %-.

#3

The scheme is exactly the same as in problem 1: we need to make sure that the
function is nonnegative, and integrable. Now

2:6—35320

if z > 0and 22 <2, 1ie., in [0, \/ﬂ Since g > /2 this is not a candidate for
probability density.
Similarly,
20 — 22 >0

if 0 <x,and 2 > z. But g = 2.5 > 2 and this function is also not a suitable
candidate.

#4 (C)
We apply the definitions:

a Thus,

o0 9] K
PX >20] = f(z)dx = / de = lim {E] =0+ % =0.5
2

20 0 ;CQ K—oo

b The cdf is given by F(z) = [*__ f(t)dt, hence

x<10: F(z) =0

10 107° 10
t

leO:F(I):/ —dt = =1-—

10 t? 10 x

(note that F' is continuous at © = 10 - hence it makes no difference whether
we define F' = 0 for x < 10 or x > 10, and similarly for the definition of
F “from the right”. If F' had had a discontinuity, convention is to define
it as continuous from the right.

c Now we have 6 RVs, and we haven’t been told anything about their joint
distribution. We need to assume that they behave independently (which
is by no means an obvious assumption, but we are given no choice), so



that we can treat this as a 3-out-of-6 system, with probability of failure
given, for each component independently, by

(note that for continuous RVs, it makes no difference if we include or
exclude the endpoints of intervals, since the probability of X being exactly
equal to an endpoint is zero - or, equivalently, because, for integrable

functions b
lin})/ f(t)dt:/ f(t)dt

i.e., antiderivatives are continuous). Applying the argument we met in the
previous assignment, the requested probability is given by

i( ’ >(1ﬁ)k176k =

k=3

3 Q) 6+ () ()0

3

2 8 8- 82
== (204+15-24+6-224+92%) = — (20+30 + 24 + 8) = —— = .89986
36( + + +27) 729( +30+24+8) 729

Here, we use the formula

EX = /OO xfx(x)dx

which is meaningful only if z fx is an integrable function (for instance, a density
of the form -5 for > 1, with suitable ¢, would be indeed a density, but it
would have no expected value. More to the point, the Cauchy distribution
(with density of the form ﬁ), which appears in several applications, also
has no expected value).

a First, note that f is indeed a density function (it is a member of the family

of so-called “Gamma” distributions) :

/0 er dx—z([—Qxe ]0 +4)—1



by integrating by parts twice. To streamline the caleulations, it doesn't hurt

to remember (from the exponential distribution - ef. p.209 in the book)
that

f ke 5 dr =1, f kre ® dp =
it 0

It follows that X = 4

ol Wo

== . ) 2
krle Fody =
/ e

b We already saw in problem 1 that ¢ = 41 Az for the expected value,

3 (! ; 3 [«2 2?]'
E."(=—f (l—at)de=2|=-Z| =0
4/, 412 4]

Of course, this could have been seen immediately, since we are integrating
an odd function (flx) = —f{—x)) over an interval symmetric around 0.

¢ First of all, this function is a density, since

[ =[], -

but it has no expected value: = - F" = % is notoriously not integrable at
+oo I[_flx %rl_r: =log X — ocas X — o).

5| an

H#7

A we noted in problem 1, a density function has to satisty = 0, and fj:__ fdr =

1. The last formula provides one relation to determine the missing constants,
To determine both we need another relation, and that's provided by the value

" OO0 . a
of [ _ xfdr. We have two equations in two unknowns a and b

b

1
f (o + F;I::E;'I dr=an+==1
8]

[

1
f z (a+ F;.'rg} dre=2 +

0 2 ;

] =
I
Bl

Solving this simple system gives a = -::- b= 1.:-

#9

Let's go to example 4b on p. 130 of the book., Recapping, we consider

a random wvariable X representing the number of units of a product seld by a
department store that has to stock them in advance!, Suppose a stock of s has
been ordered. Then a profit of b per unit sold, and a loss of [ per unit left unsold

I'The boak, mysteriously, talks about X as the amount of units “ordered”, rather than
sold. Maybe they were thinking of a mail-order only store, but it sure makes for a confusing
discussion. In any case, equation (1) (which s also the equation at the bottom of p. 134)
makes clear what this is all about.



i recorded.  Incidentally, we are not considering “virtual losses", due to
missed sales because of insuflicient stocked items that cause some demand not
to be satisfied. The equation is then (ef. the first equation on page 130), calling
the profit, a function of s, Pls),

P(s)=b(snX)—(s— X)"1I @)

(we introduced a couple of common notations: a A b = min (a, k), and

= 1
at = { :; :: o T omax {az, 0}

to shorten the writing),
Now, the expected profit is

EP(s)=bE[snX|—1E(s— X)" (2)

and some care is needed, since neither function of X is linear!

As you may guess by looking at the discrete variable solution on p. 135, the
trick is to break up the expectation in two parts, depending on whether = < X
or not. Equivalently, we could introduce two RVs

Y =sAX:Z=(s—X)"

and write down their densities (actually, they are “mixed” random variable: they

talke a specific value with a positive probability, while the remaining values are
continuous:

PlY=s|=PX=2s:PZ=0=P[X =4

and a density elsewhere) while, conditioning on X < s, we have a (conditional)
density, the density of X, sultably normalized.

There are tricks to represent even the distribution of discrete RVs in terms of
“densities” (recall that some books refer to the pmf of a discrete RV as a “discrete
density”). This is done in a handwaving manner by introducing the so called
“f—function” (which is not a function at all) & (x — a), where ¢ is characterized
by the property that, for any continuous function,

-/‘. fle)d oz —a)lde = fla)

which is sometimes "explained” in physics and engineering books by stating that
dis “equal to zero everywhere, except at o, where it is infinite” (there are rigorous
mathematical ways to define such an object - as a Schwartz “distribution™ - no
relation with probability distributions, of course - or as a measure, or as a linear
functional on an appropriate function space - all the preceding terms are, in a
sense, equivalent or closely connected), Hence, a pmf py, pa.....p,, for values
Ty.r3, ..., 1, can be written (formally) as

flz) = Z,Ta'kd'{-f-' —xp) (3)
k=1



This is only meant to show that the following solution for the problem,
assuming X is a continuous RV, applies to the discrete (or even mixed) case as
is, using the formal trick of equation (3).

We compute the expected values in (2):

ElsnX]=3sP[X = s+ /-“ xf (x)dz
0

(here f is the density of X)

E [{s - }:f] _ fn (s— ) f(z)dx

so that the expected profit is

hsP [X = 5] + hf zf (z)dr — IsP[X < 5] + {f af (x)dr

0 0
Let’s derive this expression with respect to s (noting that P [X > s| = 1— F (s),
and [X < s| = F (&), where F' is the odf of X, and that £’ = f):
b(l—F(s))—bsf(s)+bsf(s)—IF(s)—lsf(s)+1sf(s) =
=b—(b+ 0 F (=)
which is zero for any = such that

. b
Fis") = T (4)
Note that there could be more than one 5%, if the function F happened not to
be strictly monotone. However, for instance in the discrete case, only the left
endpoint of the interval of s satisfying (4) would have physical meaning (if you
are counting single units, you cannot sell “2.45 single units”). This has been
expressed as an “ineguality” condition in the solution to the discrete problem

#10

a We have a density function

1 T=t=<8
fo U}={ (1 otherwise

for the arrival time of the passenger, The passenger will take the train to
I if he/she arrives between 7and 7: 05, 7: 15 and 7 : 20, and so on, up to



7:45 to 7 : 50, for a total time “window” of 20 minutes. If he/she arrives
in the remaining time intervals, the “winning” train goes to A, and that
is over a total “window” of 40 minutes. Hence, the probability of going to

Ais g—g = % Incidentally, the probability of the passenger catching the

train that leaves at 7:00 is zero, since fOO fp(t)dt =0.

b At first, we have 5 minutes of opportunity to get the next train, which now is
the one going to A. After this initial period, the passenger has again 10-
minute windows to catch a train to A, alternating with 5-minute windows
to catch a train to B, and, if late, will catch the 8:00 train to A. Hence the
percentage for the two destinations is the same as before: the probability
of going to A is 2.

#13 (C)

a Since you will wait for more than 10 minutes if the bus arrives later than 10:10,
the probability is the probability of such an event. Since the arrival time
distribution is uniform over [10 : 00,10 : 30], we see that the probability
is %

b Now we have a conditional problem: if W is the waiting time (which coin-
cides with the arrival time counting from 10:00, and hence is uniformly

distributed over [0, 30]) in minutes,

PIW>250nW >15 P[W > 25]
W>25[W > 15] PIW > 15] P[W > 15]

1
3

SEES

(which is almost obvious: you are wondering if the bus will come in the
last third of your remaining time window).

Note Note that, as you push the question to waiting times closer and closer
to 30, your probability, conditional or not, of waiting that long goes to
zero (in fact, P[W > 30] = 0). If the bus arrival distribution had been
exponential, things would be much different: while your probability of an
early bus would in fact be higher, once you had waited 15 minutes, the
arrival probability would not have increased at all! In fact, the exponential
distribution, just like the geometric in the discrete case, does not improve
your odds, as time goes by without anything happening (cf. the connec-
tion between the two, that we showed in class). For example, if W was
exponential, with mean value 15 (that’s the mean value of the W in the
problem), it would have density, for ¢t > 0 equal to

1
—e
15

and your probability of not waiting more than, say, 10 minutes, would be

_t
15

10
5

5 —1— e 35 = .48658



much better than the % that would happen with the uniform W. On the
other hand,

 PW>2nW>15  P[W >25
PIW=>25IW>15] = ——pnr 95— ~ P15

o
&

5

@
o

_ 10
—e 15

= 48658

= =
o

(49
|
o

i.e., your probability of waiting 10 minutes or more has not improved one
bit. This not the same situation as before: P [W > 30] # 0, and, in fact,
by the same calculation,

P[W > 39|W > 29] = 48658

as opposed to zero.

#15 (C)

The trick for these computations, which are critical in statistical applications is
the following;:

If X is a normal RV, with expected value u, and variance o2, the
RV Z defined by

(note that the denominator is o, not ¢2) is normal with expectation
0, and variance 1. Consequently, its cdf can be looked up in tables
and/or coughed up by a calculator or computer program (e.g., any
modern spreadsheet) that has it pre-programmed. Note that

g g g

Pla<X <b=P

Let’s apply this to the questions (1 = 10,02 = 36,0 = v/36 = 6):

a P[X >5]=P 350> 30— p 7> 2] = 79767

b PA<X <16 = P[4l <Z <8510 = P[-1 < Z < 1] = 68269 (note
the famous values for

P[-1<Z <1~ .68, P[-2< Z <2 =.95450 ~ .955, P[~3 < Z < 3] = .99730 ~ .997

expressing the probability of a normal RV to be within ¢,2 - 0,3 - o, re-
spectively, from its expected value).

c PIX <8 =P[Z <32 =—3] =.36944

1
3



d P[X <20|=P[Z <20 = 3] = 95221

e PIX>16]=P[Z>18=10 _ ] =

= 2PlZ]> 1) =5 (1-Pl-1< Z<1) =

N | —

(1 —.68269) = .15866

Remark In the last calculation, we used the result from point b to save a
trip to the tables. The idea was to rewrite the event Z > 1 in terms of
other events whose probability we had already looked up, relying on the
symmetry of the normal distribution. If course, it might be just as fast to
evaluate 1 — P [Z < 1] through the tables.

419

This type of problem works by recasting the question in terms of a standard
normal distribution, and then going to the tables. Thus,

X -FEX c—EX

VVar[X] ~ VVar[X]

C
P[Z ——6}
~ 3

=P

P[X>d=P

X - EX 012]

VVar[X] ~ V4

where Z is a standard normal. Reading tables in reverse, we find out that
PlZ > z41]=.10

where z 1 = 1.2816. Hence,
= 7.2816

c
2
c = 14.5632

#22 (C)

We are asked the probability that a RV distributed like N (.9000,9 - 107%) will
take values in the interval [.8950,.9050] and to determine o, so that this prob-
ability will not exceed .01

a Let’s call X the width of the slot. Then
—.0050 X —.9000

00507

P[.8950 < X < .9050] = P [—.0050 < X — .9000 < .0050] = P

:P[—§<Z<§]

.0030 < .0030

3 3

<0030



(where Z is a standard normal). From the tables,

5 ) 5
Pl——<Z<-|=20(=)—1=.90442
ez<i]-= ()
(note that the solution manual has .9050, since it rounded % to 1.67,
causing a relative error of roughly 1073- most likely irrelevant, since we
are working in an approximation form the start) where ® is the cdf of

a standard normal. The defective forges will thus form a percentage of
1 —.90442 = .095581, or, approximately, 9.6%

b We solve the second question by making a reverse lookup of the tables:

P [|Z| < z_;%} = .99

with Z.995 = 2.5758. Hence,

P Hw‘ < 2.7578} =.99
g
or
P[|X — .9000| < 62.5758] = .99
Now,
02.5758 < .0050
if 0050
S 0019411
7= opmes - 00

#23

The number 6 appears with probability %, thus the number of appearances over
1

n throws is a binomial with parameters n, 5. If X is this random number,

X —

o3

n,
6

(e[S

is approximately a standard normal. For n = 1000, 150 < X < 200 if

1000 1000 1000
150 — 190 x 190 200 10

1000 .5 /1000 .5 1000 . 5
6 6 6 6 6 6

- 900 — 1000 _ X — 180 1200 1000
NGO \/%,% ~ /5000
_ 100 _ . 200
502 © T 5012



where Z is (approximately) a standard normal. Since
Pl-v2< 7 <2v2| = 91091

this is the requested probability?2.

On the other hand, if 6 appeared exactly 200 times, the remaining 800 throws
were divided between the remaining 5 possible outcomes. Out of 800 throws,
the number of 5s (conditional probability +) Y satisfies

Y —800- 1 750 — 800
P[Y < 150] = P > < =
/800~%-% 2 -4/800
—P{Z<—L]— 18838
B 42]

Remark The solution manual suggests to calculate P [149.5 < X < 200.5], in-
stead of what we did above, i.e., P[150 < X < 200]. This is a homage
to a practice (sometimes called “smoothing”) that purports to take into
account the fact that we are approximating a discrete distribution with a
continuous one, by, somehow, interpolating by halves between the “really
possible” values. This practice is not completely justified. In fact, if the
number of trials is too small to invoke the Central Limit Theorem straight,
it is unlikely that this correction will go in the right direction anyway. If
the number of trials is adequate (and for a binomial distribution, with p
not too close to 0 or to 1, such a number is really low), there is simply no
point in doing so, since \/—55 will in any case be of little relevance. Also,
since we are doing an approximation anyway, it doesn’t make too much
sense to push the number of significant digits too far, which additionally
makes the correction more a matter of whim that a sound mathematical
need.

#26 (C)

This probability of error in our statistical reasoning is called an “error of type I”
(i-e., we reject a statement about the coin, even though it is true). If X is the
number of heads, using the normal approximation, we will compute, for p = 0.5,

X — 1000 - . 25 — 2
P[X2525]:P[ 0005, 525 500] :P[ZZ—E)] — 056923
V1000 - .25 V250 V250

2The solution manual has the value .9258, for a discrepancy of about 1%. There are at
least two reasons for this. One is discussed in the remark at the end of this problem. The
other is that the calculations in the book are full of rounding errors, since no effort is made
to postpone divisions and root extractions to the very end, nor of reducing the square root to
the simplest possible. The same discrepancy is present in the second calculation.

11



(in statistical practice, the threshold would be set a little bit higher, since it is
customary to work with a probability of error of type I of 5%).

If we now assume that p = .55, we will reach a false conclusion with proba-
bility
X —1000- .55 525 — 550

< =

V1000 - .55 - .45 ~ /55-4.5

25

247.50

Seen from the point of view of a bias in favor of the coin being fair, this is
called the probability of an “error of type II”, i.e. the probability of accepting
the statement (in our case, “the coin is fair”), even though it is false.

This computations show that our test is reasonably strong to distinguish in
a serious way between p = .5 and p = .55. Actually, in practice, people will
be quite happy with a probability of error of type II no larger than 10%. If we
wanted tighter numbers (i.e., smaller probabilities of error), we would have to
throw more times, but there is a diminishing return here, since the reduction in
standard deviation (=square root of the variance) that we obtain is only propor-
tional to the square root of the number of throws - to get a reduction of order
10, we need 100 throws, etc. Note also that, whatever numbers should come
out, our procedure will only be correct with a certain probability. A statistical
test never proves anything: it only checks whether the data we actually observe
are likely or not, given our assumptions.

mx<wmp{

P [Z < - ] = .56018

#29 (C)

We have a the outcome of the sequence of a sequence of variables with values
u or d, but in a multiplicative way: if the price today is s, the price tomorrow
is either su or sd. The solution book suggests to proceed as follows: let X the
number of times the stock increases, and 1000 — X the number of decreases. At
the end of 1000 periods, the stock will have changed by a factor of

uXd10007X

and we ask whether this is greater than 1.3 (a .3 increase). This happens if

uXdIOOO—X Z 1.3

S log1.3 — 1000logd

X = 469.2

log 7

and now the problem is finding the probability that a binomial RV with param-
eters 1000, .52 is greater than 469.2. With the usual normal approximation, this
becomes

plz> 469.2 — 1000~.52} _p [Z S 469.2 — 1000 - .52] _p [Z S 50.800 } _
+/1000 - .52 - .48 v/1000 - .52 - .48 Vv/249.60

12



P[Z > —3.2154] = .99935

We can also apply our usual machinery, which is concentrated on sums,
rather than products, by working with logarithms. This is not necessarily sim-
pler or faster, but illustrates an interesting model for the stock market.

Let’s call S the log of the price Y = ¢°, and a = logu, —b = logd a > 0,b > 0
(for financial reasons, we need to assume that v > 1, and d < 1 - otherwise, since
if tomorrow’s price was surely over or under today’s price you would be able to
make unlimited amounts of money by buying today and selling tomorrow, or
vice-versa, by buying on credit or selling “short”, i.e., without actually owning
the stock)3.

Hence, with probability p, S will change to S+ a, and with probability 1 —p,
n
k
the stock, after n days, would be S,, = S+ ka — (n— k)b. The expected value of
one day’s change (remember we are looking at logs) will be m = pa— (1 —p)b =
p(a + b) — b, while the variance will be

0% = pa®+(1-p)b>—(p(a + b) — b)* = pa®+b>—pb®—p*(a-+b)>+b>~2bp(a-+b) =
=p(1—p)(a+0)?

Now, for large n, we can approximate 2 T:/%Zm with a standard normal. Since

to S — b. Hence, with probability ) p* (1= p)" " the log of the price of

Sn — S = log %, where Y is the initial price, multiplied by the up and down
movements, we finally have that
log Xz —n(pa—b(1—p))
Vvnp (1 —p)a+b)

is (approximately, but well enough for n large) distributed like a standard nor-
mal.

For the purpose of our problem, we have n = 1000, = 1.012,d = .990,p =
.52. Hence a = .0119,b = 0.101. We wonder whether % > 1.3, i.e., whether
- log1.3 — 1000 (.52 - .0119 — .101 - .48)

- 0.1204/1000 - .52 - .48

The probability of this event is, from the tables,
P[Z > —3.2149] = .99935

Z

consistent with our previous calculation. Of course, the extensive use of logs
causes a lot of uncontrollable rounding errors, and that accounts for the small
discrepancies, as well as for the discrepancies with the solution manual.

Incidentally, the distribution of Y,, (the exponential of a normal RV) is known
as a “lognormal” distribution, and, as already mentioned, is a classic favorite in
theoretical financial models.

3 Actually, this is true if we assume we can borrow money, in order to buy on credit, at
0 interest rate. The complete model (called the “binomial model”, and used extensively for
simulations) also calls for an interest rate greater than 0, and, consequently, the restrictions
on v and d are such that we won’t be able to gain no matter what, because credit would have
a cost.

13



431

You might recall the following fact: for any RV X, the number m that minimizes
the function ¢ (m) = E {(X — m)ﬂ is m = FX. This is easily proved, by just
expanding the expression, and observing that a parabola concave up is lowest
at its vertex. This can be expressed by saying that “the number that minimizes
the quadratic expected cost is the expected value”’, and provides a connection
between the variance (and the idea of “quadratic cost”), and the expected value.

Another way of “measuring cost” is the one put forward here: minimize the
expected absolute value of the error, instead of its square. Let’s try to answer
the question for a general continuous distribution (the argument for a discrete
distribution is even more straightforward): let X have density fx, and cdf Fy.
We look for a number a that minimizes

o0

w@=mw—w=/'u—ﬂhWMx

— 00

Due to the absolute value, there is no way we can solve this by deriving with
respect to a - which illustrates why it is so much nicer to work with quadratic
costs! By definition,

r—a xT>a
o al = {

a—z x<a

so that

oo

v@= [ -0 fx@det [ @0 fx @ -

oo a

:a(/_;fxdm—/aoofxdm) — (/_;xfxdx—/:oxfxdm)

This expression we can derive with respect to a in an easy way:
' (a) :/ fde—/ fxdx +2afx (a) —2afx (a) =

Fx (a) = (1 = Fx (a))

and this is zero when
2FX (a) =1

Fx(a):P[Xga]:%

This value is called the “median” of the distribution (it represent the value for
which X has probability 0.5 of being either lower or higher), and it is often used
in describing empirical data (e.g., newspapers will report the “median price of
housing”, the “median income”, etc. in a given area).

For our specific questions, we thus have that

14



a a is the median of the uniform distribution on [0, A], and it is obvious that
A

GJ:E

b a is the median of the exponential distribution, and this is the value such

that
P[X <a|=P[X >a]=05
i.e.
e =105
1
—da=1 -
a = log (2>
log(2
a= og/\( ) =7 -log(2)

Note the connection between a and the expected value 7 = % It is the
median that is often called “the half life” of a radioactive material, whose
decay law is assumed to follow an exponential distribution. It is almost
the same as the expected value, up to a factor of log(2) = .69315.

Of course, we obtain the same result if we work directly with the given distri-
butions, without referring to the general result.

a We look for ¢ that minimizes

1/1(a)=/0A|x—a|%dx:%(/Oa(a—a:)dat—&—/aA(x—a)dx> =

1/, a A% — g2 1 (A2 9

which, as a function of a, is a parabola, concave up, with a minimum at
A

its vertex, i.e. at a = —‘TA =%

b We now look at minimizing

/ Mz —ale dx = A (/ (a —x) e Mdx + / (x —a) e”dm) =

0 0 a

=\ (a (/ e Mdx —/ e”dm) — (/ xef)‘zdx—i—/ xe”dm))
0 a 0 a

Multiplying throughout the first factor A, we get

a— % (1 - Qe*Aa)

(we have used the cdf of an exponential, 1 — e~**, as well as integrated
by parts the terms of the form

/C re Mdy = {Xxe_’\x} ) + X/c e Mdy =

15



1 —Ac —Ad 1
— X (ce —de ) + F (
substituting appropriately).

This function of a will be minimized at 1 4+ 2e~*% =1, or a = &2

e—Ae _ ef)\d)

#32 (C)

We only need to remember that for an exponential RV, with parameter A
P[X >t]=e

a We are asked to calculate

PIX>2=e P =¢27 =¢ ! = 36788

b We are now asked for

PIX>10NnX>9 P[X>10] e MO
PIX>10|X>9]=P[X>9+1|X >9]= PIX > 0] T PXS9 e ™

—e*=P[X >1]=¢"? = 60653

Remark We have re-proved the remarkable property of the exponential distri-
bution:
PX>s+t|X >s]=P[X >

Remark Note that \is the reciprocal of the expected value. Hence, when we
measure time in hours, Ais measured in h~!, and when we measure in
minutes, it is measured in m !, etc. Hence, its value, in an application,
will depend on the units we are using. The book should have specified
that the value % it was assigning to A\ was in h~!. Note, by the way, that
the units used for A are those of frequencies.

#34 (C)

Here, once we do the math, we get to see the difference between lifetimes that
are exponentially distributed, and lifetimes that are not! Indeed, we already
know (and the math would be the same as in the previous example), that, for
the exponential case,

PX>t+s|X>t]=P[X > ]
hence that

P[X > 10,000 + 20,000 |X > 10,000] = P [X > 20,000] = ¢~ 20000 = ¢~} = 36788
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which is the same probability of going 20,000 miles that Smith originally had.
If, however, the distribution is uniform on [0, 40, 000], then

P[X >30,000] 40,000 — 30,000 10,000 1

X>1 _ _ _ _1
P[X > 10,000+ 20,000 X > 10,000] = 5—=530601 = 20,000 = 10,000 30,000 3

Of course, originally, the probability of getting 20,000 miles had been %

Note In this case, X is measured in 1000s of miles - hence Ais measured in
(1000mni) "

+36

A distribution with hazard function h(t) is such that
PIX >t]=eh®

hence in our case,

a P[X>2=c Jo " = =% — 1= 018316

b PlAd<X <1d]=c Jo P4 _omJy P8 _ -t -1 61088

2
¢ PIX>2|X >1]= 222 — o )i 7% = =441 = 023518

437

As usual, let’s be careful with absolute values.

a P X[>3]=P[X>3]|+P[X<—-§]=2-7=3

b To find the density, we can proceed in several ways. Let’s, for instance,
compute the cdf (obviously, Fiy = 0 for x < 0, so we restrict to x > 0):

1

P[|X|§x]:P[—gg§X§x]:/ Lit=u

—X

Hence, | X| is uniform on [0, 1].

#40 (C)

We work just as we did in the previous problem (note that e* > 0 for any x, so
the variable Y only takes positive values - we thus restrict to y > 0):

P [eX <y|] =P[X <logy] =logy

17



as long as logy < 1,i.e., y < e (which is obviously the top range for e¥), and logy > 0, i.e.

y > 1 (which is obviously the bottom range for e*). The density of ¥ is the derivative of this

function: always equal to 0, except for 1 <y < e, where it is equal to %

Theoretical Exercises

#1

This is, really, a Calculus exercise. We are enforcing

o0

/ aze P =1

0
The following method relies on the identity I’ (%) =™ which you may be familiar with, or
not (it is proved on page 199 in the book), and the property of the Gamma function (see page
215): I'(z) = (z — DI'(z — 1)
Taking this identity for granted, we can use substitution, namely ? = u, to transform the

integral into
_ 39
. /oo \/bt_ﬁ buggy — al’ (%) /Oob(bu)z i
2 0 Vb by/b o I (%)
From the definition of the Gamma distribution (on page 237), we know that the integral is equal
to 1 (read b as A in the formula). Hence, we have
()
a—7-=1
b2
v
2
3

_ 20 _ o /D
a—\/ —Qb\/7T

S

results in

which, using the fact that I"(3) = 11" ()

S

#2

Following the hint, we have (for absolutely continuous random variables)

00 0 00
o= [ = [ vt [ s,
00 00 0

Integrating by parts both inteérals results in N
WFy@) - / Fy(y)dy

—00

where F'y is the cumulative distribution function of Y. To prove the assertions we only need to
observe that the integral is precisely the right hand side of the equation (when a density function
exists, the definition of cumulative distribution function in terms of < or < makes no
difference), and that, in order for the expected value to exist, the first term in the expression has

(o.¢]
to be zero (that is equivalent to the requirement that the integral / yf Y(y)dy exist!)

—00
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#3

The hint shows a pretty straightforward path. A less rigorous argument (that can, however, be
extended to more general situations, once the necessary technicalities are settled) could go as
follows.

Let X' be a continuous random variable. We approximate it by X ,,, where the range of X has been
“cut up” in small segments [a o Qg +1>’ of length l, and X,, = a,, for all outcomes such that

a, < X <ay, . We now have a discrete random variable, and we have, from Chapter 4

Elg(X,)= Y g(a,)P[X, = a]
k

By the fact that P[ X, = a;] = f(z)dz, and that the right hand side is now, essentially, a
ay,

Riemann sum for our “target" integral, as n — oo, we have our proof.

Remark: the argument would work for any random variable X, if we had a rigorous method for

passing to the limit in Z g9(a;)P[X € [ay, ;)] even when the distribution does not admit a

k
continuous density. In fact, we would need to extend our definition of integral, in order for this to

work, and that is precisely what the Lebesgue integration theory does for functions if a real
variables, and general measure theory does for more general situations (recall that our X has an
abstract space, the sample space, as its domain).

#5
Let’s follow the hint:

which proves the statement.

#6

This problem has a simple answer: choose F , as the event when X is not equal to a. It is not
such a surprising example, as we are dealing with an uncountable intersection. In fact, if you
take complements, the condition requires that the union of the complements of these sets (each
having probability zero) have probability 1. This can obviously happen only because we are
dealing with an uncountable collection of events.

This example reminded me of a different, more surprising, one, which you might feel has some
relation to it (or maybe you won’t feel that way - no matter: it is an interesting example, and it
has big implications in unexpected areas, like celestial mechanics).

Consider the set of rational numbers, say, between 0 and 1. Since they are a countable set, we
can write them up as a sequence, say, r, 79, 7', ... This is a dense set in [0,1]. Now, consider the
set made up of the union of intervals of amplitude 25—n around r,,, for a small €. The total

probability associated with these intervals is less than or equal to the sum of their amplitudes,

which is equal to € Z 2—1n = ¢. This is surprising, because € can be as small as you wish, but the
n
sets we are talking about are all open and dense, so that, in a topological sense, they are “big”.

The intersection over a sequence of such sets, as € — 0, will have probability zero.
Topologically, though, it will be the intersection of a countable number of open dense sets - this
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is called a “second category Baire set”, which, again, topologically is thought to be a “big” set
(the intersection of second category Baire sets, is, again, a second category Baire set). The
conclusion of this example is that “probabilistic” (or “measure theoretic”) size is very different

from “’topological” size.
#10
We don’t need to be this lazy, but, thanks to a quick change of variables (it is a standard one:
2
T — W% ), we might as well prove that f(z) = e~7 has an inflection pointat |z | = 1.

2
Since the second derivative of f(z)is (22 — 1)e~* this is pretty obvious

#15

A simple way to show this is to evaluate
PlcX >2]=P[X >&L=e M =¢

#16

The hazard rate for an absolutely continuous random variable X is defined as the density
PX €dz | X > x|

formally defined by a2 , which, with a little care, can be seen to translate, in the
x
case of absolutely continuous random variables, into % , as discussed on page 234
—Ix

(section 5.5.1). It is a very intuitive tool in survival and reliability theory. For a uniform variable
on [0, a] (notice that, for distributions with a continuous density, it makes no difference if we
consider open, closed, semi-open, etc. intervals), this translates to

1

a 1

TI=a—%
a
Not surprisingly, it explodes as x approaches a: after all our gadget has to fail at some point
between 0 and @, and as we approach the end of the interval “time for failure is running out™!

#23
The density of a Weibull distribution can be defined from
R(t)=P[X >t|=e
(In reliability/survival analysis we will always have t > 0). While there are approximating
argument to justify this choice, the most obvious reason is seen by comparing with the
exponential distribution, where
PX >t]=e®

As the question implies, choosing values of b less than, equal to, to greater than 1, corresponds
to having hazard rates that are decreasing (a “rejuvenation” effect), constant (“memoryless”), or
increasing (“aging” effect). Thus, the Weibull family provides an easy toolbox for a quick and
dirty description of the different age-related scenarios for the likelihood of an upcoming failure.
The hazard rate calculation is an exercise in derivation:

f(®) _Rl(t) ~ dlogR(t) d(—atb> !

R() ~ R() a — a4t ¢
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The conclusion about the different behavioras b > 1, b = 1, b < 1 follows now easily

#27
The cumulative distribution function for X'is P[X < z]= H. Let’s define Y = aX + .
Sinceaa+ 3 <Y <ab+ g, We need to make sure that aa + 6 = 0, and ab + 3 = 1. Thus,

we want o = ﬁ, 8= for example, the cumulative distribution function

will confirm this is he right ch01ce

PlY <y]= P{X<y ﬂ] PX<a—(a—byl=y

(for 0 < y < 1), by directly substituting.

#29

Note that F' is a monotone increasing function. Since we are assuming that it is strictly monotone
increasing function (and, one could be careful and extend the argument to the non strictly

. . -1 . . .
monotone case), it has a proper inverse F' ~ (in the non strict case, one can use the “right
inverse”). Then,

PIF(X)<yl=P[x <F ') = F(F ') =y
This observation is sometimes used to simulate a random variable with a given distribution
function, starting from a program that simulates a uniform random variable: starting from a
uniform random variable Y, the random variable X = F 71(Y) has distribution function F. This
method is easy, whenever F has an easy inverse e.g., for exponential variables, but not for
normal variables), but has its own numerical pitfalls - for example, simulating an exponential

variable requires the computation of a logarithm, which is computer intensive, as well as less
precise than algebraic calculations.

#31

We can compute the probability density function in various ways. A plain route is the following:

logy el
PleX <y|= P[X <logy]= / e »dx
—00

Vz

Taking the derivative with respect to y, we obtain
_ (logy—p)*

2
1) = £
This choice for stock price modeling has the advantage of s1mplicity, since the logarithm of the
random variable has a convenient normal distribution, but it does have a number of drawbacks.

One that got a lot of attention in the wake of the recent financial crisis is its lack of “fat
tails” (outliers are very unlikely), but there are other concerns as well as to its appropriateness.
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