Math 394

Solutions to Homework Assignment

Problems from Chapter 4
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The trick here is to notice that P [a < X < b| = Fy (b)—Fy (a) (notice the miss-
ing/present equality sign, which is due to the definition of Fy (z) = P[X < z|).

a Clearly, Pli—c < X <i] = Fy (i) — Fx (i — ), and for the different cases,

we have T 1
i=1:Fx(1)—Fy(1—¢)==— 45
11 /1 1-¢
=20 Py (@)~ Fy (20 = - (34 )
11
i=3:Fx(3)—Fx(3—¢)=1— —
i=3:Fx (3) - Fx (3-¢)=1- o

To get the required P [X = i|, we use the fact that

{(X=i}=(|{i-e<X <i}

|0
, to obtain (thanks to our assumptions about continuity of probabilities),

PX =il =1limFx (i) — Fx (i — g)

el0
or
1:1:1—1:l
2 4 4
i = 2 1—1—<l l):ﬂ_zzl
12 2 4 12 4 6
11 1
1= 1—E—-ﬁ



b The spirit is exactly the same: to “fix” the < (instead of <) sign to the right,
we write the open interval as a limit, and get

1 3 1 3 1 24s-1 4
Plo<c X< |z=lmP|lo<cX<_+4¢|=lm|[=4+2— 2| =
lfz 2 =0 |2 2 ] (2 1 4
1 1 1 1
2 8 & 2
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The company considers the two possible events: FE, with probability p, and E*
with probability 1 —p. If the event occurs, it pays A, if it doesn’t it pays nothing.
Hence, the expected payment is pA+ (1 — p) - 0 = pA. The expected profit will
be the premium (which we'll call R) minus the expected payment, and we want

this to be .1 - A:
R—pA=.1-A

R=A(p+.1)
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When we are playing a best-out-of-3 series, with team A a winner of each game,
independently, with probability p, the series will last 2 games with probability

p?+(1 — :n]z = 2p*—2p+1, and 3 with probability l—{p2 + (1 — pjz} = 2p—2p°.
We already checked last week that EN = 2+2p —2p?. We can choose to compute

Var (N) = E [N?] — (EN)?



or

Var (N) = E (N - EN)’|
The result won't change. For example,
E [NE] - l[}_f?_-"".-’}2 = 2°P[N =2]+3?P[N = 3] - (2+2p— 23}2}2 =

4-(2p° = 2p+ 1) +9-(2p—2p%) — (2+2p — ‘2:»2}2 =
= S;EJZ —Bp+ 44 18p — l?i;u2 - -'1-;::4 - f’lj‘}g —4—8Bp4 sz -+ 8;}3 =
= —dp* +8p” — 6p” + 2p = 2p (1 — 3p + 4p* — 2p*)
The expression is clearly 0 when p = 0, and p = 1 (because in both cases N = 2
with probability 1). We may compute the derivative, finding
—16p” + 24p® — 12p+2 = 2 (1 — 6p + 12p* — 8p*)

which is indeed 0 for p = 0.5. Dividing this polynomial by p — %, we find that

) 1
1 —6p+ 12p% — 8p* = (:u — E) (—8p® +8p—2) =

1 1 1
=2 (p - E) (—-’13}2 + 4p — l} = -2 (:u — E) (2p — l].l2 = —8 (g;-— E)

i.e. p = (.5 is a triple zero for the derivative. That this is a maximum follows
obviously form the fact that the variance is zero at the boundaries and positive

inside.

#41

If our supposed ESP man had been guessing, he would have had probability %
to get the guess right. The probability that he guesses right 7 times or more
is thus (we are not given the specific sequence of rights and wrongs, hence we
need to use the binomial distribution!)

210 (1" 1 (10.9-8 10-9 L 166
2% ) 5) =swl—s—t——+1) =g (120+45+ 1) = o5 = 16211

k=T
which is not large, but it's not terribly small either. By the way, to speed up
the calculations, we used the identity (obvious, if you look at the definition)

n n n!
k) \n—k ) & (n—k)!
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We calculate the corresponding quantities for the binomial distribution (b}, and
the Poisson distribution (p):

8
2

p: A=np=.8 — %e““ = .14379. The relative error caused by the

Paoisson approximation is £ = W = —0.033669, i.e. about 3%

a P[X =2]=h: ( ).12.9“ = .1488

b P[X =9]=b: ( "

p: we compute the probability that 10 — X (which is the sum of events
of small probability 1 — p)is I: A=n(l—p)=.5 — 5 -7 = .30327.

e = S BIOL2 — 037605
c PIX =0]=h ( l[? ) 1Y.9'Y — 34868
prA=np=1—e "= 36788 ¢= SLEE08 — (55065
9

4

pr A=np= 18— Lo 18 = (72302, £ = Q2002 06606 _ (9449,

d P[X =4]=h: ( ) 2%.8% = .06606

In these examples, relative errors range form around 3% to more than 9%. Note
that n is relatively small in all of them.
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With such small probability, 1.4 - 10~*, we can use the Poisson approximation
(try to use the binomial formula, and you will agree that it’s best to go Poisson).



Hence we have A = np = 10% . 1.4.107% = 1.4, and the probability of exactly 2

successes is

1.42
et = 24167

The requested probability, however, is for at least two successes, and so is
best computed by
l—e M —14-e 1 = 40817
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a As usual, the probability of “at least one” is best computed as 1-probability
of “none”. The probability that none of the 500 soldiers is positive will be
.9995%° s0 the probability for at least one positive will be 1 — 999790 ~
1 — e 800000 — 1 _ =05 — 1 _ 60653 = .39347 (the last expression uses
the Poisson approximation)

b Again using the Poisson approximation, we will have that the probability for
more than one positive is

1—e "%~ 056" = .090204 (4)

Since we already know that one is positive, we need to condition on this
fact (since X > 2 = X > 1, the intersection has probability given by (4)):
-0.5 _ ().5-0:5 5

L R

1l —e-05 elh — 1

l—¢

(the increase is significant - it corresponds to having had to rule out the
highly probable event that nobody is positive)

¢ The question is somewhat ambiguous. As far as Jones knows, the probability
that someone else has the disease is 1 — 999177 ~ 1 — 499001 — 7 _
e~ 199 — 1 — 60714 = .39286

d Now, we have 500 — i individuals, and, for all we know, they each have a
probability of 107" to carry the disease. Hence, the probability that at
least one does, is

1— 9997~ 1 — f:_m_ﬂﬁm_” =1—¢e "Fcmom



Theoretical Exercises

#13

n—k

We have that to maximize P [X = k], we only need to look at p* (1 — p) . The
derivative is equal to zero when

k1 n—Fk i n—Fk—1
kp (1-p) -—-(m-k)p"(1-p) =0
k(l—-p)—(n—-KkK)p=0
np =k = p= %

In other words, the Maximum Likelihood Estimator for p is the frequency with which we
observed a success.

Notice that the solution depends on £, that is the observed value of X, In a statistical experiment,

X

we would call this quantity, 5— (in statistical lingo, this 1s called, confusingly, a statistic), the
MLE for the unknown parameter p, and would use izs distribution to give quantitative statements
about the likely values of p.

#18

We have another example of a Maximum Likelihood Estimator. As before, we only need to
e

concentrate on the factors in P [X = k]that actually involve X, thatis, A e ~*.

Setting the derivative equal to zero, we have



EAT e A A Fer 2 g

E—XA=0
A=k
The MLE for the Poisson parameter is the number of occurrences of the “rare” event. This is
consistent with our result in Exercise #13 and the connection between Binomial and Poisson
random variables. Recall that, in the Poisson approximation A = n p . Since the MLE for p is

%, it is very natural that the MLE for A isn - %

#25

This is a remarkable and important feature of the Poisson distribution: if we censor its
observations with (independent) probability p, the result is still Poisson, albeit with a smaller
parameter.

First of all, observe how this is again consistent with the connection between Binomial and

Poisson distributions. The binomial case would work as follows. Suppose X = Z X . 1s

the sum of » independent Bernoulli variables with parameter ¢, and hence Bin(n, q) Suppose now
that, independently, each Bernoulli variable can be turned to zero with probability p. This can be
represented, for example, by introducing another sequence of independent Bernoulli variables

n

with parameter p, and considering Z = Z X .Y . .For X, Y = 1weneedboth

k=1
Bernoulli variables to be equal to 1. Since they are independent,

P[Xk: LY , = l]= P[X . = 1][Yk: 1]= ¢p
and consequently Z is binomial with parameters 7, and pg. A Poisson limit will have parameter
A=mnpqg=ppifp =ng
Now for a direct proof. Let N be a Poisson variable with parameter p . Consider the censored
variable X. To compute P [ X = k|, we will condition on { N = n } (obviously, we have to
require n > k), and apply the total probability theorem:
o

P[X =k|= Z P[X =k |N =n|P[N = n|
n==k
Now observe that, conditioned on a fixed value of n, Xis the result of » independent
observations that result in a success with probability p: in other words, its conditional
distribution will be binomial with parameters n and p. Substituting, we have

P[X =k]= Z (Z)pk(l—p)nki—r: = _“Z (n k;)
n==k :k

k n—k pon_k
(1-p) pp" #:

10



_ — e et (=) _ =2
k! (n — k)! k! m ! k!
n = m =
where (after a simple change of summation indextom = n — k), wedefined A\ = up
#27

We actually discussed the core of this fact in class (“The Geometric distribution has no
memory”). It follows directly from the definition of conditional probability, and the obvious fact

that {X = n + k} C {X > n},sothat
{X =n+ k} ﬂ {X >n}={X =n + k}.Consequently the required conditional
probability is
n+k—1 n+k
P X =n+Ek] (1-p) —(1-p) k-1 k

— — (1— (1 - — P[X =k
PIX > 0] T (1-p) (1-p) [ ]

11



