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The MLE for the Poisson parameter is the number of occurrences of the “rare” event. This is 
consistent with our result in Exercise #13 and the connection between Binomial and Poisson 
random variables. Recall that, in the Poisson approximation ¸ = n p . Since the MLE for p is  

n
k , it is very natural that the MLE for ̧  is n ¢ nk

#25
This is a remarkable and important feature of the Poisson distribution: if we censor its 
observations with (independent) probability p, the result is still Poisson, albeit with a smaller 
parameter.
First of all, observe how this is again consistent with the connection between Binomial and 

Poisson distributions.  The binomial case would work as follows. Suppose X =

k = 1

Xn
X k  is 

the sum of n independent Bernoulli variables with parameter q, and hence Bin(n,q). Suppose now 
that, independently, each Bernoulli variable can be turned to zero with probability p. This can be 
represented, for example, by introducing another sequence of independent Bernoulli variables 

with parameter p, and considering Z =

k = 1

Xn
X kY k . For X k Y k = 1  we need both 

Bernoulli variables to be equal to 1. Since they are independent,
P [X k = 1 ; Y k = 1 ] = P [X k = 1 ][Y k = 1] = q p

and consequently Z  is binomial with parameters n, and pq. A Poisson limit will have parameter 
¸ = n p q = p¹  if ¹ = n q
Now for a direct proof. Let N be a Poisson variable with parameter ¹ . Consider the censored 

variable X. To compute P [X = k ], we will condition on fN = n g  (obviously, we have to 
require n ¸ k ), and apply the total probability theorem:

P [X = k ] =

n = k

X1
P [X = k jN = n ]P [N = n ]

Now observe that, conditioned on a fixed value of  n, X is the result of n independent 
observations that result in a success with probability p: in other words, its conditional 
distribution will be binomial with parameters n and p. Substituting, we have

P [X = k ] =

n= k

X1 ³

k
n
´
p k(1 ¡ p )

n¡ k

n !

¹ n
e ¡ ¹ = e ¡ ¹

n = k

X1

k !(n ¡ k ) !
n ! p k(1 ¡ p )

n ¡ k
¹ k ¹ n¡ k

n !
1 =
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= e ¡ ¹
k !

(p¹ )
k

n = k

X1

(n ¡ k ) !

(¹ (1 ¡ p ))
n¡ k

= e¡ ¹
k !

(p ¹ )
k

m = 0

X1

m !

(¹ (1 ¡ p ))
m

= e¡ ¹
k !

(p¹ )
k

e¹ (1¡ p ) = e¡ ¸
k !
¸
k

where (after a simple change of summation index to m = n ¡ k ), we defined ¸ = ¹ p

#27
We actually discussed the core of this fact in class (“The Geometric distribution has no 
memory”). It follows directly from the definition of conditional probability, and the obvious fact 
that fX = n + kg µ fX > n g , so that 

fX = n + kg
\

fX > n g = fX = n + k g . Consequently the required conditional 

probability is

P [X > n ]

P [X = n + k ]
=

(1 ¡ p )
n

(1 ¡ p )
n + k¡ 1

¡ (1 ¡ p )
n + k

= (1 ¡ p )
k ¡ 1 ¡ (1 ¡ p )

k
= P [X = k ]

11


