Math 394B Summer 2010

Solutions to Homework Assignment

due 7/26

FProblems from Chapter 4

#1
Since X denotes our winning, we have to consider all possible outcomes, and
these are (nsing the initial of the color of the two halls extracted):

« WW X = -2

o WO X =-1
e WEBX =1
e DO X =0
s OB X =12
s BBX =1

As for the respective probahilities, we have a total of 14 halls, and the probahil-
ities are computed remembering that this is an extraction without reinsertion:

e PIWW|=PX=-2=5 HF=4=2
s PWO] = PX = -1] =2 ¥} = #
o PIWB]|=PX=1]=2.$4. =&
e PIOO]=PX =0]=3& 4=
4

e POB]=P[X =2]=2. & =1__|§1_

. P[BB]:P[XZJI]:%.E:&
Henece, the probability of losing is %
while the expected payoff is

. of heing even '_'11_1 and of ending ahead %

—56—16+324+ 16424

91 B

(The game is considered “fair”) Of course, even if the probability of winning

is greater than that of losing, that is not enough to ensure a positive expected
payoff . The amounts invalved play a decisive role.

EX = 0



#2 (C)

We call the points on the two dice X and Y - they are obviously RV’s and
P[X =i] = P[X =j] = ¢ forall i,j,= 1,2,...,6. Let us develop a general
formula for the distribution of the product of two independent discrete RV’s:

PXY =2]=) P[XY =z[Y =y|P[Y =y
Y
where we sum over all possible values of Y. Now, using a trick that was already

introduced in the solutions to the “practice problems” for the 1st Midterm, we
get

Zywmzwmpwmzyﬂxayﬂpwm

Eyﬂxzﬂpwzm

where, by independence of X and Y, once we eliminated any reference to the
RV Y, by substituting its value on Y = y, X does not care any more about
being conditioned on the value of Y!

In our specific case, since X and Y take only integer values, we are restricted
to z and vy, such that § is an integer between 1 and 6. Hence,

L PIXY =1]=Y, PIXY =1]Y =y]P[Y =y] =
=P[X=1P[Y=1=%

2. P[IXY=2]=P[X=2|P[Y=1]+P[X=1]P[Yy =2]=2 =1
3. PIXY=3]=P[X=3]|P[Y =1]+ P X =1]P[Yy =3] =%

4. P[XY =4]=P[X =4 P[Y =1J+P[X = 2] P[Y = 2]+P[X = 1] P[Y =
3

_ 1

36 1
5 P[XY =5]=P[X =5|P]Y =1]+P[X=1]P[Y =5 = &

6. P[XY =6]=P[X =6]P[Y =1]+P[X =3]P[Y =
+P[X =2]P[Y =3]+P[X =1]P[Y =6] =5 =3

7. P[IXY =7]=0

8. P XY =8=P[X =4]P[Y =2]+P[X =2]P[X =4] = &
9. P[IXY=9]=P[X =3|P[X =3] = =
10. P[XY =10]=P[X =5|P[Y =2] + P[X =2] P[Y =5] =
11. P[XY =11]=0



12.

13.
14.
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17.
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35.
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PIXY =12]=P[X =
+P[X =3]P[Y =4+ P[X =2|P[Y =6] =
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#4

Of course, the values taken by X are 1,2,3,4,5,6, since the worst possible case
is when all men are ranked ahead of all women, in which case the 6th ranked is
necessarily a woman...

Also, it is immediate that P[X = 1] = 0.5, since, by symmetry, the highest
ranking person will be a man or a woman with equal probability. If X > 1,
then the highest ranked person is a man, and

Pm:aX>u:g

(we are picking at random among 9 people, of whom 5 are women), and

5 1 5

1
PX=2]=PX =2)X > 1JP[X > 1] =5 = —

We can proceed recursively: we now know P[X > 2] =1— (% + %) = % =
so that

©oln

?

p[X:?)]:P[X:3\X>2]P[X>2]:g%:%
and continuing,
p[X4]P[X4|X>3]P[X>3]g-<§3—56>?%%
PIX = 5] PW5X>MHX>M%'G%%>%'%§%
P[Xzﬁ]zi!—(?!!ZQ—;Q

In the last calculations we took the alternative route of considering all 10!
possible arrangements, and the 5! possible ways in which five men could have
been put in positions 1-5, and the 5! arrangements in which five women could be
put in positions 6-10. Of course, a similar calculation could have been done on
the previous cases, just like the last case could have been solved like we solved
the previous ones.

#7 (C)

Even if we are concentrating on the particular case of two dice, the point here
is we are looking at certain functions of two independent random wvariables, for
their distribution. If X and Y are independent RV, we have the following:

1. Pmax{X,Y} <z] = P[X <zNY <z|, and, by independence, this is
the same as

where Fx is the cumulative distribution function of X



2. Pmin{X,Y} >z] = P[X >2zNY > z|, and, by independence, this is
the same as
P[X >z]P[Y > z] = Rx (2) Ry (2)
where Ry is the “survival function” of X.

3. PIX+Y=z]=3 PX+Y=z[Y=y|P[Y=y|=3 PX+y=z[Y =y|P[Y =y|(by
the total probability theorem). By independence, now,

=Y PX+y=2P[Y =y|=> P[X=z—y|P[Y =y

This expression is sometimes called the “convolution product” of the two
distributions, and written px * py (2) = >_, px (2 —y) py (y). You can
check that px * py = py * px

4. As for X — Y, since this is just X + (-Y), its distribution is given by
px *p-y =3, px (2 +y)py (¥)

Note that these formulas are true for any pair of independent discrete RV’s, and,
in fact, with the exception of points 3 and 4 (where some care needs to be taken
for continuous RV’s, as we will see in due time), for any pair of independent
RVs at all.

Of course, in our special case, we can find the distributions “by hand”, given
the small size of the problem, even though the problem only asks for the possible
values. In any case, using the formulas above,

a max{X,Y} can take values 1,2,...,6. Note that, for a die, P[X < k] =
so Plmax {X,Y} < k] = &

(Sl

’

b min {X,Y} can likewise take all 6 values, 1,2,...,6. Since P[X > k] =1—%,
Pmin{X,Y} >k =Pmin{X,V}>k+1]=(1-5)" =& _ k41—
MEL2 11 =1 k. 122k (here k=0, 1,...5).

36
¢ X +Y takes, as we well know, all values 2,3,...,11,12, and we have referred
to this distribution many times: for £ = 2,3,...7, the probability is %,

and for k = 7,8,9,...12, it is ==L
d X — Y takes the values from 1 — 6 = —5 to 6 — 1 = 5, and all integers in
between:

6
PIX-Y =kl= ZPX (k+37)py (4)
j=1

where the sum is automatically limited to values of j such that 6 > k+j >
1. Thus for each k we count how many such js there are, and we add %
for each of them: just by listing the values allowed, we see that for k£ < 0,
j=1lk+1],...6, and for ¥ > 0, j = 1,2,...,6 — k. In other words,
P[X —Y =0] = £, and we reduce this amount by 4 for each step we
take away from 0, either decreasing by one, or increasing by one.



#12 (C)

The outcome possibilities are, by definition, 11,12,21,22, while the same holds
for the players’ bets.

a Since the sum of the fingers shown can only be 2,3, or 4, these, their opposites
(—2,—3,—4), and 0, are the possible values for X

Consider the outcomes including the bets, and the corresponding values for X
(each of the 16 lines has the same probability):

e 11-11 X =0
e 11-12X =2
e 11-21 X =-2
e 11-22X =0
e 12-11 X = -3
e 12-12X =0
e 12-21 X =0
¢ 12-22X =3
e21-11X=3
¢ 21-12X =0
¢ 21-21X=0
¢ 21-22X=-3
¢ 22-11X=0
©22-12X=-4
e 22-21 X =4
©22-22X=0

A much faster way of computing probabilities would be to write the outcomes a
different form: each player can throw the two numbers equally likely, and they
can guess the right number equally likely. Hence we can count the outcomes as
(R=right guess, W=wrong guess)

ij-RRX =0

ij-RW X =i+

ij- WR X = —i—j

ij- WW X =0



Each line has probability i, Sinece i+ 7 = 2 ar 4, with probability l, i+ =23

with probability %, we have that

| =

PIX = 0] = -

!

I

=] =

PX=2=P[X=-2=P[X =4 =P[X=—4]=~-

1
o]

| =
ra] =

P[X=3]=P[X =-3]=

(it adds up to 1, ad it should: =+ +4- =+ 2. 2= 1)

b We are now ruling out results like 12 - 21, etc. That leaves only 4 possible
outcomes (11- 11,12 - 12, 21- 21, 22 -22), and either both guess right or

both guess wrong, so the only possible outcome is X = (0.

#13 (C)

We have six possible outcomes - three for each call. You can think of a tree for

each call

For each call, the tree would look like ths:

Mo zale
Hale

()
Standard
-



Combimng the two sapes, we can solve the problem by calculating the probabilities for
all "leaves (the end nodes) of the complete tree:

Mo sale p=.7

Alternatively, we can compute the outcome of each call, and add the results, relying on

the independence of the calls. This would go like ths:

Using conditional probability calculations on each tree, we hawve that if 4
means sale of standard, and B sale of deluxe,

P[A] = P[B] = P|Asale] P [sale] = .5 - .3
for the first call, and
P|A] = P[B] = P[A[sale] P [sale] = .5 .6
for the second. If X, and X, are the two dollar values, we have
PX, =500 = P[X; = 1000] = .15

P[X: =500 = P[X; = 1000] = .3



Now, X = X; + Xy, the sum ol wwo independent variables. Without using vhe
convolution formula introduced in point 3 of problem (but we could’), we have

PIX=0=P[X;=X2=0=P[X; =0 P[X2=0] = 7-.4= 28

P[X =500] = P[X; = 500, X2 = 0]4+P[X; =0, X» = 500 = 15-4+.7-3 = .27

P[X = 1000] = P[X; = 1000, X2 = 0]+ P [X; = 500, X2 = 500]+ P [X; = 0, X2 =

=.15-44+.15-3+.7-3=.315

1000 =

P[X = 1500] = P[X; = 1000, X2 = 500[+P [X; = 500, X2 = 1000] = .15+.3+.15+.3 = .09

P[X =2000] = P[X; = 1000, X2 = 1000] = .15 + .3 = 0.045

Of course, there are other ways 1o deline the events {X = z}, and hence of
computing the pml for X.

#18
The “basic” evens are HHHH, HHHT, HHTH,... . TTTT. There are 2* = 16
ol them, each has probability ¢ = . The number of them thau involve 4 H is

1,3His4,2His ( 1 ) =6, 1His 4, and no H is 1. So we have, calling X

2
. 4 1
P[’Y=J]=(‘j )F
You will notice the vypical “eent™ or “peaked” and symmerric shape ol this

distribution: iv characlerizes the binomial dislyibulion when we are dealing with
(-1 variables with equal probabilivy:

the number ol heads,

. ) 2 ] o

Now, we are asked [or the prol of X—2: clearly P[X —2 =k = P[X = k+ 2],

and so .
4

X-2=Fkl= -

pix—2=b= (1, )5

for k = —2,-1,0.1, 2. The corresponding histogram is exactly Lhe same, excepl
it is shifted hovizontolly (Lo Lhe lell) by —2.



#20

The various possibilities are, as so often, well represented by a tree graph. With
probability 33, X = 1 and the play ends. With probability 22, we make two
bets on red. These produce the outcomes

1. X = —3if no red comes up at all - conditional probability (%)2

2. X = —1 if one red comes up - conditional probability 2 - % . %

3. X =1 if two reds come up - conditional probability (%)2

Overall,
3
@ =
w s (m) i=1

a From the table, P[X > 0] = P[X = 1] = 2 4+ 20 (18)> _ 5918

b This is the wrong place to ask this question. You should wait for the re-
sult in point ¢! The answer in the answer book (“no, because when the
gambler wins she wins $1, but when she loses she loses $1 or $3”) is mean-
ingless, since, as an example, if she had 99% probability of winning, and
.0001% probability of losing $3, I would suggest that she should adopt this
strategy!

¢ From the table, we can compute

18 20 [/18\°2 18 /20\? 20\?
EX=|—24+22.(=Z 42 = (=) (=1 Z) (=3 =
l38+38 (38)] teg (38) ( )+<38) (=3)

= —.108

so that, even she is likely to win more than half the time, in the long run
she can expect to lose money, since every time she loses the loss is, on
average, big enough to offset the wins.

+#22

You can use this problem as an excuse to evaluate (roughly!) the “home field
advantage”, in baseball and basketball playoffs. We are playing a “best of i+i—1”
series. Consider team A and count its number of wins, X. The series ends when
i 1s or 7 Os have appeared over 2i — 1 trials. Even if it’s not part of the problem,
let’s look at the probability of team A winning the series. There is no need
to do calculation by stopping as soon as the ¢ 1s or Os have appeared: we can
imagine that 2i — 1 games are played anyway (this is what is usually done in

10



Davis Cup and Federation Cup Tennis series). Hence the probability that team
A has “¢ or more” wins is

PIX > :212_:1( 2’;1 )pj (1= )it

j=i

Going to the problem at hand, the number of games played is determined by
the position of the ith win for either team. Plainly, we can look at the probability
that the series lasts i,7+1,...,2i — 1 games when A wins, and obtain the result
for the other team, simply by interchanging p with 1 — p. Since the result is, in
this sense, symmetric, and the result is that there are ¢ games with probability
one whenever p = 0 or p = 1, we can guess that, indeed, the highest expected
number of games should occur when p = 1.

To find a general formula, we note that if we play ¢ + k£ games, we need to
count the ways the k£ wins by the other team can be intermingled in ¢+ k games -

i+ k

k
A’s. These are exactly the number of series where A winsin 4,i4+1,...,i+k—1
games. We thus have a recursive solution:

. However, we need to subtract the ways where the (i+%)th win is not

e There is ( é ) =1 way to win in ¢ games

t+1
1

i+ 2 1+1 ) i i .
Thereare( 5 )—( . )_(0):%_(24_1)_1“,&},5

to win in ¢ 4+ 2 games

i+i—1 i4i—2 i -
Thereare< i1 )< i_9 )...<O>waystow1n1n

2¢ — 1 games

There are < ) — 1 =1 ways to win in 7 4+ 1 games

Applying, if N is the number of games played,

. k—1 . .
PIN=i+k|X>i]= (”,;'“)Z( ’}L,j > P—p)*ik=01,...,i-1
=0

ENg(Hk) <H/;k)§< zw;j > (pi(lip)kijk(lip)i)

Finally, we can also note that the highest terms (k =i — 1) have a contribu-
tion from the last parenthesis of the form

pa-pt

i i i i—1 i i—1 o i
+p 1 -p) =p T (1=p) T (p+1-p) =p"t(1—p) = —p¥ Ip!

11



We see that we always get a polynomial of even degree 2i—2, that, because of the
symmetry of the problem, has to be symmetric around p = % (interchanging p
with 1—p the problem simply interchanges A with the other team). This means
that p = % has to be an extremum for the polynomial, and, still by symmetry,
this has to be a maximum: it is at least intuitive that no other zero of the
derivative can occur between 0 and 1, and that the function is increasing when
p grows from 0, and decreasing as it grows towards 1.
In the two special cases mentioned

ai=2EN=2(p+(1-p)°)+3Cp(1-p) = 2+2p (1 - p) = 242 2",
This has a parabola graph, concave down, and the vertex (the maximum)
is midway between two equal levels, e.g. midway between 0 and 1 (both
give EN = N = 2), as suspected. Yes, you can also derive and find the
result by zeroing the derivative 2 — 4p, even though it looks like overkill.

bi=3:
EN =3 (p3+ (1—p)3)+4(3p3(1 -p)+3p(1 *p)3)+5'6p2 1-p)°=

= 6p* —12p° +3p> +3p+3

which, again, is equal to 3 for p = 0, and p = 1, and, by symmetry, will
have a maximum in the middle. Using derivatives gives a similar result,
except you have to solve a 3rd degree equation

24p® — 36p? +6p+3 =0

find the other zeros (that is easy, since you can check directly that p = 0.5
is a root), and check that the maximum does correspond to p = 0.5.
Dividing by p — 3 (if you didn’t know, you can apply the standard long
division algorithm to divide two polynomials), we obtain

24p* — 24p — 6
and equating to zero, the remaining critical points are the solutions to
4> —4p—1=0

or p = 3(1++/2). Since neither is in the range [0,1], & is the only
extremum we are interested, and by symmetry, since, formally, EN — +o0
when |p| — oo, the two “outer” critical points have to be minima, and the
middle critical point has to be a maximum. OK, you can also get the

result by checking the sign of the second derivative.

#23 (C)

If you but $z of the commodity today, you will have § ounces, and they will be

worth either $Z or $4 - £ in a week.

12



a Your expected wealth (in the commodity) will be E$ = L (£ +22) = 2 + 2.
This is linear in z, so the maximum is at the highest p0s51b1e value for z,
i.e. $1000. The expected wealth is $ (1000 + 250) = $1250

b If you buy today $z of the commodity, and $ (1000 — z) in a week, you will
get £ ounces today, and either 1000 — z or 1%%=% ounces in a week. The

expected number of ounces will be

z 1 1000 — z T
§+§ (1000x+T> =625 — 3
which is again linear, so that the maximum occurs at the lowest value of

z,ie. ¢ =0.

#25

This is, essentially, a tedious exercise in listing:
we need to compute the probabilities for each combination in the second
table, using the probabilities:

Dial 1: P [Bar] =5, PBell] = {5, P [Plum] %,
P [Lemon] = 2, [Orange] >, P[Cherry] =

Dial 2: P [Bar| = 3;, [Bell] =15, P [Plum]
P [Lemon] = 0, P [Orange| = 207P [Cherry]

Dial 3: P[Bar] = 3 P [Bell] = 5. [Plum]
P [Lemon] = 1, P [Orange] = =, P [Cherry] =0

The varlous comblnatlons have probabilities

1. Bar-Bar-Bar (60): 35 - 55 - 35 = 555 = -000375

2. Bell-Bell-Bell (20): & - 15 - 35 = 5055 = -0015

3. Bell-Bell-Bar (18): 4 - % © 35 = 30055 = 0005

4. Plum-Plum-Plum (14): - 55 - 1% = 155 = 003

5. Orange-Orange-Orange (10): o - & - & = 1585 = .1575
6. Orange-Orange-Bar (8): 3; - 2—70 : 2—10 2255 = -002625

7. Orange-Cherry-Anything (2): 2 - o~ -1 = 2 = .0525

8. Cherry-No Cherry-Anything (0): % 421 = 2% = 2275
9. Anything else (-1):

3—|—12+4+24+126+21+420+1820_1 2414
8000 o 8000

13



It is already evident that the payoff schedule is not really rational, and also
extremely unfair (roulette, blackjack, craps, and other casino table games have
much better odds for the players, even as they still favor the house). The
expected payoff for a player is, using the data above

12 4 24 126 21 420 5586
X = 60- 20- 18- 14. 10- . . —1. =
E 60 80001L 0 80001L 8 8000Jr 80001L 0 8000jL8 8000Jr 8000 8000
2490
=———=-0.31125
8000

14



Theoretical Exercises From Chapter 4 (Part 1)

#3

The (cumulative) distribution function for a random variable X is defined as

(this is just traditional, and results in a function that is continuous from the right, with left-hand limits —
but we could, just as well, have chosen P[X < z], except that this tradition is now consolidated).

Since we have that 1 — F,(z) = P[X >z], and P[X =z|=P[{X <z}\{X <z}]=Fx(z) —limy, Fx(v),

P[X}:v]zl—FX(x)—i—FX(:v)—li{nFX(y)zl—li%nFX(y)
ylx yTx

44

The (cumulative) distribution function of e will be

PleX <z =P[X <log(x)] = F(log(x))

Remark 1. Here we are following the notation used by the book, where “log” stands for natural loga-
rithm. This is also the convention used in practically all mathematical and physics texts above the
algebra/introductory calculus level, since natural logarithms are the only ones that anybody would con-
sider using. Recall that decimal logarithms are not practical as functions: they are still in use in situa-
tions like the evaluation of the pH of a solution, or the sound level in decibels. These are all static num-
bers, and since they are converting from scientific notation, decimal logs are convenient.

#5

Again, we only need to apply the definition:

P[aX—i—Bg:c]:P{ng_ﬁ}:F<~T—ﬁ>

46

We have

EN=) iP[N=i]=Y i(P[N>i—1]—P[N>i])
i=1 i
Since ), iP[N >i—1]=3%". (i+1)P[N >1i], the conclusion follows immediately.

Remark 2. We changed the summation index in the last formula. This proof does not follow the hint
from the book. Try that method, as “inverting summation order” is a useful trick in many situations.



47

The hint from the book works immediately, but let’s try another route:

zi zQ(P[N>z—1]—P[N>i])—i i{(P[N>i—1]—P[N >1))
=1 i=1
=3 (i+1)’P[N>i] =Y ?P[N>i] =Y (i+1)P[N >i]+ Y iP[N>i]
=0 =0 =0
Z(Qz—l—l—z—l—l—z [N >i]=2 Z [N >i]
1=0 =0

#8 (not suggested, but, oh, well...)

We will have that

E[cX]=pc+(1—p)c?
pc+(l—p)et=1l<=pct—c+1-p=0
1++4/1—4p(1—p)

2p

CcC=

This has always a real solution since p(1 —p) < %, with the maximum occurring at p= % Also,

V1—dp+4p?=/(1-2p)* =[1 - 2p|

We see that
e for p<g %, the “4” solution is equal to % = 1;%, while the “ —” solution is # =1
o forp> %, the “4” solution is equal to % =1, while the “—" solution is %ﬁ;*_l = 1_Tp

Thus we have a continuous solution equal to T for 0 < p <1, and another continuous solution, equal to
1, for all p.



The following graph shows both solutions: the “+” is in blue, the “—" in green:

Figure 1.

49

This is a commonly used fact. Indeed, in general,

ElaX +f8l=aEX +j3
Var[aX + ] =E| (X +  —aEX — 6)2] zE[a2(X —EX)?| = a?Var[X]

Hence, having set u= EX,0?= Var[X], we have from Y = %X - £

o

EY:lEX—gzo

g

Var[Y] = %Var X]=1



