Math 394B & C

Solutions to Homework IProblems

Lev us be up [ront aboul some of the [ollowing problems (for example, Lhe
poker adds prablems). Your instructor is not terribly goad ab solving them
either, but, nat being a gambler, doesn’u feel bad aboul iv al all. These vricky
combinatorial problems are here w show how Lhey are done, and what kind
of resulis you can gel, buu they are very marginal - unless vou are planning a
cambling career, ar, [or thal malter, a combinalorial career. Combinalorics is
a very complex [ield, with several [ascinating applications, but it has minimal
averlap with probabilivy. The next assignments will be richer in core issues Lo
the class.

#1

Let us call the marbles, according Lo their color, R,G, and B. The “ightes.”
sample space Lthal we can consider will have Lo account for all possible oucomes
when we only look au the colar of the balls we pick. The possible aulcomes
cilfer, depending an what we do with the [irst ball we pick. We have vhus Lhe
Lwa [ollowing cases:

I. The ball we pick [irst is puL back in the box, belore we pick the secand.
Hence, Lhe [irst pary of the experiment and vhe second lack the same, and
bath allow [or any of Lhe balls Lo be chosen: we can use the [ollewing space

Q={RR,RG,RB,GG,GR,GB,BB,BR, BG}
Nale that #Q = 9 = 32

2. In the secand scheme, the [irst ball is nou pul back, hence, the oulcomes
where bath exiractions yield the same color are excluded. The sample
space will now be

Q ={RG.RB,GR,GB,BR,BG}
and #Q =6=3-2

The numbers we [ound [or #Q are well justilied. In the [irst case, we have 3
possible ouvcomes for the [irst exiraction, and, corresponding wo each of these



three, three more for the second - hence 3 - 3 = 32. In the second, once a ball
is extracted, the possible outcomes for the second extraction are only 2 - hence
3-2.

More generally, if we had n different balls, and extracted k of them with the
first rule (putting the extracted ball back every time), the number of possible
results would be n*.

In the second case, when we do not put the ball back, we have, necessarily
k < n (once we have extracted n balls, nothing is left), and the number of
possible outcomes is counted by noting that we have n possibilities at the first
extraction, n — 1 at the second, n — 2 at the third, and so on, until the k—th,
when we have n — (k — 1) (we have already taken k — 1 balls away. Hence the
number of possible resultsisn(n —1)(n—2)...(n —k+2)(n —k + 1).

Details on this type of calculations can be found in chapter 1 of the book.

#2

The problem at hand is logically tricky, in that no specific upper number of tri-
als has been given. In principle, the experiment should go on until a 6 appears,
and nobody is ruling out that it won’t appear (in this particular experiment)
in a thousand years... In practice, experiments like this do not continue “in-
definitely”. First of all, it would be highly unusual for a 6 never to appear in
several dozens or hundreds of tosses. Second, if we had not got a 6 after a few
hours, we would certainly call it quits. But, unless we have a specific threshold
in mind (say: “I will stop after 1000 tosses, no matter what”), there is no natural
way to determine an upper limit. Since we do not have a natural bound, the
mathematician in us will choose to allow “infinite sequences” of tosses - where
what is meant is “unlimited”, rather “infinite”, in the sense that we are always
willing to go to toss n + 1 after we have gone through n tosses, even if we will
not actually make infinitely many tosses.

We have a choice of sample space, depending on whether we want to focus
on the present experiment only (which only checks whether we have a 6 or not),
or wish to allow for further analysis (like what numbers came up before the 6
ended our sequence).

In the first case, we only need to check whether we had a “success” (6 came
up), or not. Denote a “success” by 1, and a “failure” (some other number came
up) by 0. Then our possible outcomes are sequences of 0s, terminated by a 1,
like

{1},{01},{001},{0001},{00001},...

and so on. In principle, we are dealing here with infinitely many sequences,
one for each toss at which we finally get a 6. In the notation of the book,
E, = {1},E> = {01},.... Here, our sample space has each event Ej as a
singleton event.

We could however choose €2 to keep track of the specific results of each toss
before a 6. In this case, elements w would look like, say, {1,4,2,2,4,5,1,6}, or



{2.3,3,1,5.6}, etc. The event E; would include anly the element {6}, bu. E»
would cansist of {1,6},{2,6}.{3.6}.{4.6},{5,6}, and =0 an.

Finally, nove that, whavever choice of Qwe make, we have Lo cansicler Lhe
possibilivy that a 6 nevey appears. This would correspond Lo the anly acuually
inflinite sequence in our space: in the [irsL notation, an inlinite sequence ol zeros.
In vhe secand, the {inlinitely) many sequences made of 1,2,3,4, 5 anly. I we call
the carrespanding event E.., we can abserve thal U::f‘ E). means “far same F,

w € E.”. Hence -
0= ( U E;_.) UEx
k=1

k=1

ar



#9

Leu 2be the wwalivy of the establishment's customers. The subser A, of those
carrying American Express, has relative [requency .24, and the subsev V', of
thase carrving Visa has [requency .6G1. We also have thav the [requency of
ANV is .11. Wha we are incerested in is A[JV (American Express or Visa):

P[AUV] =P[A|+P[V]—P[AUV] =20+ .61-.11=.74



415

Card games provide a wealth of combinatorial problems. To solve them quickly,
we need to refer to formulas developed in chapter 1. Specifically, the starting
point for these problems is to determine a finite partition of the sample space,
Q=Ui_, Ai (A4;NAj =0,i # j), such that our problem can be represented by
assigning the same probability to each A; : P[A;] = % The minimal sample
space in this case would be made up of n points, corresponding to each element
in the partition, with P [{w;}] = 1. Problems in such a setting are solved by
counting how many points (or atoms of the partition) fall in the requested event.
Moreover, the number of points, n, is determined by counting how many atoms
make up the partition.

There are 52 cards in a poker deck, and one hand consists of 5 cards picked
“at random”. It is usually assumed that “at random”, in this context, means
that the probability of any specific quintuplet is the same for all. How many
quintuplets can we build out of 52 cards? Well, we have 52 ways to pick the first
card, 51 for the second, and so on. That would indicate 52-51-50-49-48 = i—?:
However, the order in which we receive the cards is immaterial: AKQ or KAQ
or QKA, etc. all amount to the same triplet. Hence we divide by the number of
equivalent quintuplets, i.e. by all rearrangements of 5 cards - 5!. The result is

520 520 /52 [ 52
47150 (52 =5)150  \ 5 )\ 47

The last symbol is called a binomial coefficient, defined for integers n > k as

(5)=amm = (")

hands have the same probability, we have to

Assuming all possible ( 552

count how many hands constitute the various cases listed.

a A flush is when all 5 cards are from the same suit: here are 13 cards in each
13
5 (same
argument as above). There are 4 suits, so the possible ways to have a

flush are 4 - ( 153

suit, so the number of ways to extract 5 from one suit is

). Hence, the probability is

.. ( 13 )
5 .
_ 41,287 =.00198

( 52 ) 2,598,960

5

b One pair requires two cards to be the same, and the remaining three to be

different: given a card number, there are ( ) ways to pick two of them,

2



and ( 132 ) ways to pick the other three, so that they have all different

numbers. There are also 13 different card numbers we can choose. Finally,
each of the three numbers that appear in one hand can be picked in 4
different ways. The result is

(o) (5) e
(%)

¢ The argument for two pair is similar, with the following choices involved: pick

two out of the 13 possible numbers (( 123 )), pick two out of the four
available for each pair (( ;L )), and, finally, one (the fifth card) out of

the 44 remaining 44 cards (( 414 )), for an end result of

(5)(2) () (Y)
2 2 2 1
~ .048
52
5
d Three of a kind, is very similar to two of a kind. The same arguments, with
the appropriate changes, give

4 12
13(3)( : ).4.4
~ 021
52
5
e Four of a kind is in the same line, and even simpler, since we have to pick

four equal cards, and just one out of the remaining 12 numbers (for 48
cards total):

13-4-48
52
5
(not terribly common, but, hey, over thousands of hands, it is bound to
happen).

=~ .00096

416

Dice games are just as popular, and the counting is easier than for card games.
Throwing 5 dice, there are 6°possible outcomes (6 values for each die), and, as



above, o “Tair™ Loss would be ane whare all 67 auLeames have Lhe same proba-
bilicy. The nexu siep is o count how many ways Lhere are Lo gew Lhe aueome
dlescribed:

a Tar no wwa dice 1o show vhe same number, we have § ways [or Lhe [irs. die,
buL only 3 [or Lthe secand, 1 [or the third, eue. (sinee the previous dice
preempt some of the numbers). All in all {vou can mawch the [ormulas
with vhe numerical resulie given wich vour calewlavar),

6—15—6-5-4-3-2—1_3—!5mﬂ.093

.

. ' - ol .
b One pair cames up when we gl Lwo egqual polnls oul of 3 (( 5 )j, which

can happen in G dillerent ways. Nexu, the remaining vhree dice have 10
came up with dillerent poines, which vhey can in 5 -4 -3 ways:

e A [ull house, implies vau pick vwa dillerent poine, and Lhen Lhrse oul of Lhe
3 dice Lthan are now egual Lo the pair:

n
o
W= o
e

z IMive alike, is suraighy lorward: wou have G choices [or vhe painl caming up:



#20

Blackjack is a particular [avorive of “combinatorialisis” in this field, since vhe
deck is shullled rarely enough so thau a player carefully counting cards has aL a
certain poiny of the game the odds in his/her [avor againse the house. Thav's
ane reason why you will be quickly vaken 1o the door il management suspecis
you of counting cards.

The game s played with each player, and vhe dealer, being deall wwo cards.
Each payer, in wirn, can ask [or an exvra card. The goal being w reach a specilic
combinauon by adding card poinis (every K.Q,J Is worth 10 polnis) wo reach
21, withouu cverstepping it. The dealer is au advaniage since he plays last, and
is vhe winner in case of a ue. However, since vhe deck is nou shullled every ume,
a careful count of cards will allow a (very) skilled plaver w evaluaie Lhe odds in
his or her [avor. You are [ree Lo check some of the many books on the game w
learn the uricks (one is by a [airly well-known mathematician, Tonescu-Tulcea).

Now, a “black)ack” is a combinavon of ace and 10-point card (10J.Q K)
which Is the wp combinavon vo win. The probabilivy of being dealy a black ack
Is camputed by noung vhat you have 1 ways of being deall an ace, and 16 of
being deall a 10-poiny card (4-4), while the passible pairs you can be deal are
52-51. Hence the probabilivy of a blacklack s 2- fi% (vou can have eiLher Lhe
ace or the card being dealu [irst). The probabilivy of both vou and the dealer
being deal. a blackjack is (P [A] + P[B] - P[AN B])

416, 416 4-4-16-3-15
52-51 © ©'52-51  52-51-50-49

which is approximacelyn.0947358 Hence, the probabiliy of wneither you nor vhe
dealer having a black jack is 1 — 0094758 or about (),90524

2




#26

Note that the probability of throwing ¢, for
i=23...,12is

1 i 12~i
"'i"““(ﬁ' 12 )
Next, the probability of winning, assuming you threw & at the first toss, P [E,
is computed by cheerving that
o P[Ey| = P|Es| = P|Eyy) =0

o PlE] = PlEy| =1

o PE| = % (1= (pu+pr))™ " pu for all remaining s (it's the proba-
bility of not throwing either ¢ or 7 in the firs succeeding n — 1 theows,

and & at the nth, summed over all possible n)
Thaws, the probability of winning is

” *
YpPlEl=pmtm+ Y BEY.(-p-p) =
=2

FE237.1.2  s=)

"
®
'
e
~

=+
.
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However, we can also think in verms of a larger sample space: consicer Lhe
space of all possible sequences of 10 excraciions of all balls. One point in such
a space would be, e

BBRBRRBBBB

The pessible sequences (remember vhal each ball is individually disuinguished,
Is the number of possible arrangements of 10 llems: the first posivion can be
any of vhe wen, the secand any of vhe nine lefu alier picking the [irse, the third
any of vhe eighy lefu, ewe: number of arrangements (“permutations™ equals 10!,
delined by

nwnn-1)(n-2)...3-2:1

(vhe [ormal delinition is by induction: 1! = L;n! = n(n 1), and iv wens oue
1 be convenlent wo agree and deline 0! = 1).

The sequences carresponding 1o a “win” by A are thase where the lisy R
appears in an odd posiion, alver which, we don’v care what happens. So, w
have an i come as [irst can be done in 3 ways (one per red ball) x the number
ol possible §-sequences, which we don'y care w look aw: 3 - 9. Assuming thay
all 10! possible sequences are equiprohable, the probabilivy of gewing a red ball
firsu would then be ¥ = & (10! = 10-9!). The first R will be the third ball
if the [irst wwo are black, which would happen in 7 - 6 pcssible ways, the third
is an R (which has 3 possible ways of happening, and the remaining T picks
are whatever Lhey may, which would happen in 7! poassible ways. Aliogedher,
7-6-3-7. Proceeding like vhis we end up with vhe formula

394763, 7"+7-6-5-4-3.5!4+7-6-5-4.3.2.1.3!
10!




#50

AL bridge, each of the four player (Lhey [orm Lwo Leams al the Lable) is deall
I3 cards. There are plenty of possible hands, bul we are looking a. your hand

52

and vour partner’s anly. So, vou can have ( 13 ) possible hands, and, from

- 39 :
the remaining 39 cards, vour pariner has ( 13 ) possible deals.

Naow, vou hape La gel 3 spades {ouw of 13}, and & ather cards (o of 52— 13 =
39 non-spade cards), while your pariner is supposed w get all of the remaining
& gpades {ouL of &, that ig), and 3 ovher cards, from the 39 — 8 = 31 remaining

cards. All in all,
13 39 8 31
5 8 8 5
52 39
13 13

454

The vrick here is in Lhe “aL least™ Lhe number listed corresponds Lo Lhe proba-
bilivy of having exaclly one void suit. Bul we need wo account [or cases where
we have 2 ar 3 void suits as well. In ather wards, denating by S, H, D, C' the
evenls Lhal spadles, hearts, diamonds or clubs are void, we have as probabilivy
[or aL least one void suit

P(8]+P[H)+P[D}+P(C)-P [s(\#|-P [s(\D|-P [sNc|-P [#N D] -

-p[aN\c|-p[pNc|+p[sNuEND|+P[sNuNC]+P[sNDNC] +
+P[nﬂnﬂc]

By symmelry, events in each group (the [irst 4 Lerms, the next 6, the last 1)
have the same praobabilivy.
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The first four add up to the “wrong” answer. The second group of 6 adds up
( 1 )
13
67
52
13

and the third group of 4 adds up to

to

for a total of

15



