Math 394B & C

Solutions to Homework IProblems

Lev us be up [ront aboul some of the [ollowing problems (for example, Lhe
poker adds prablems). Your instructor is not terribly goad ab solving them
either, but, nat being a gambler, doesn’u feel bad aboul iv al all. These vricky
combinatorial problems are here w show how Lhey are done, and what kind
of resulis you can gel, buu they are very marginal - unless vou are planning a
cambling career, ar, [or thal malter, a combinalorial career. Combinalorics is
a very complex [ield, with several [ascinating applications, but it has minimal
averlap with probabilivy. The next assignments will be richer in core issues Lo
the class.

#1

Let us call the marbles, according Lo their color, R,G, and B. The “ightes.”
sample space Lthal we can consider will have Lo account for all possible oucomes
when we only look au the colar of the balls we pick. The possible aulcomes
cilfer, depending an what we do with the [irst ball we pick. We have vhus Lhe
Lwa [ollowing cases:

I. The ball we pick [irst is puL back in the box, belore we pick the secand.
Hence, Lhe [irst pary of the experiment and vhe second lack the same, and
bath allow [or any of Lhe balls Lo be chosen: we can use the [ollewing space

Q={RR,RG,RB,GG,GR,GB,BB,BR, BG}
Nale that #Q = 9 = 32

2. In the secand scheme, the [irst ball is nou pul back, hence, the oulcomes
where bath exiractions yield the same color are excluded. The sample
space will now be

Q ={RG.RB,GR,GB,BR,BG}
and #Q =6=3-2

The numbers we [ound [or #Q are well justilied. In the [irst case, we have 3
possible ouvcomes for the [irst exiraction, and, corresponding wo each of these



three, three more for the second - hence 3 - 3 = 32. In the second, once a ball
is extracted, the possible outcomes for the second extraction are only 2 - hence
3-2.

More generally, if we had n different balls, and extracted k of them with the
first rule (putting the extracted ball back every time), the number of possible
results would be n*.

In the second case, when we do not put the ball back, we have, necessarily
k < n (once we have extracted n balls, nothing is left), and the number of
possible outcomes is counted by noting that we have n possibilities at the first
extraction, n — 1 at the second, n — 2 at the third, and so on, until the k—th,
when we have n — (k — 1) (we have already taken k — 1 balls away. Hence the
number of possible resultsisn(n —1)(n—2)...(n —k+2)(n —k + 1).

Details on this type of calculations can be found in chapter 1 of the book.

#2

The problem at hand is logically tricky, in that no specific upper number of tri-
als has been given. In principle, the experiment should go on until a 6 appears,
and nobody is ruling out that it won’t appear (in this particular experiment)
in a thousand years... In practice, experiments like this do not continue “in-
definitely”. First of all, it would be highly unusual for a 6 never to appear in
several dozens or hundreds of tosses. Second, if we had not got a 6 after a few
hours, we would certainly call it quits. But, unless we have a specific threshold
in mind (say: “I will stop after 1000 tosses, no matter what”), there is no natural
way to determine an upper limit. Since we do not have a natural bound, the
mathematician in us will choose to allow “infinite sequences” of tosses - where
what is meant is “unlimited”, rather “infinite”, in the sense that we are always
willing to go to toss n + 1 after we have gone through n tosses, even if we will
not actually make infinitely many tosses.

We have a choice of sample space, depending on whether we want to focus
on the present experiment only (which only checks whether we have a 6 or not),
or wish to allow for further analysis (like what numbers came up before the 6
ended our sequence).

In the first case, we only need to check whether we had a “success” (6 came
up), or not. Denote a “success” by 1, and a “failure” (some other number came
up) by 0. Then our possible outcomes are sequences of 0s, terminated by a 1,
like

{1},{01},{001},{0001},{00001},...

and so on. In principle, we are dealing here with infinitely many sequences,
one for each toss at which we finally get a 6. In the notation of the book,
E, = {1},E> = {01},.... Here, our sample space has each event Ej as a
singleton event.

We could however choose €2 to keep track of the specific results of each toss
before a 6. In this case, elements w would look like, say, {1,4,2,2,4,5,1,6}, or



{2,3,3,1,5,6}, etc. The event F; would include only the element {6}, but Es
would consist of {1,6},{2,6},{3,6},{4,6},{5,6}, and so on.

Finally, note that, whatever choice of 2we make, we have to consider the
possibility that a 6 never appears. This would correspond to the only actually
infinite sequence in our space: in the first notation, an infinite sequence of zeros.
In the second, the (infinitely) many sequences made of 1,2, 3, 4,5 only. If we call
the corresponding event F.,, we can observe that UZ?{O E), means “for some k,
w € E.”. Hence

or

#5 (C)

A possible sample space (let’s call it the minimal possible), will record all pos-
sible “states” for the system, as defined in the problem: all 5-vectors of 0s and
1s, where a 1 in the j—th position means that component j is working, and a 0
means it is failing.

a We could enumerate all possibilities:
{0,0,0,0,0},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},. ..

...,{0,1,1,1,1},{1,1,1,1,1}

but that would be very awkward (and think of the time involved, if we were
looking at, say, 100 components). We can, however, calculate the total
number of 5-vectors needed. In fact, each position can take 2 values, hence
two positions an take, overall, 2-2 = 4 values, three can take 2-2.2 =23 =8
values, and so on. For 5 positions, we have a total of 2° = 32 possible
combinations of Os and 1s. If we had, say, 100 components, the number
would be 2'°°) which is really too big for simple “counting” to work (in
fact 2109 ~ 1.3 - 103°, which seems big enough).

b Let us denote by x the value in a position of which we do not specify whether
it is a 0 or a 1. The case where 1 and 2 work (and we don’t care what
the others do) would be all vectors of the form {1,1,z,x,2}. The case
where 3 and 4 work would be all vectors of the form {z,z,1, 1,2z}, and the
case where 1,3,5 work would be {1,z,1,z,1}. There is plenty of overlap
between these events (call them, in order, Ai, As, A3. It is true that
W = A;|J A2 |J As. But, for instance,

A A2 ={1,1,1,1,2}



A4 ={1,1,1,2,1}
AgﬂA3 ={1,2,1,1,1}

Ay () A2( )43 = {1,1,1,1,1}

So, how many “points” belong to W? Well, #A; = 23, because we have 3
“free” variables, # A, = 23 as well, and #A43 = 22. However, if we simply
added these numbers together, we would count the intersections twice,
and we need to subtract A; (| Az =2 #A1 (A3 =2, #4142 =2. In
so doing, we subtracted #A4; [ A2[) A3 = 1 once too many, so we have to
add it back. In fact, we applied, by hand, what is a particular case of the
so-called Bonferroni Formula (see the book). In the end,

HW=224+22422-2-2-24+1=2"+22_-5=15

¢ Similarly, using our notation in point , A would be made up of all vectors of
the form {z,z,2,0,0}, and #A4 = 23 = 8.

d AW is usually denoted by A(W. Looking at our events Aj, As, A3, it is
clear that A A2 = A A3 = 0. Hence

AﬂW:Aﬂ(A1UA2UA3) -
- (AﬂAl)U(AﬂAQ)U(AﬂA3) -
AN A

i.e., all 5-vectors of the form {1,1,2,0,0}. There are exactly two of them.

#8 (C)

Since we are told that A B = (), the additivity axiom tells us that
P {AUB} — P[A] + P|[B]

Hence,

a The probability of either A or B occurring is (“or” corresponding to “union”)
P[A]+P[Bl=3+5=238

b Now we are looking at P [A() B°]. Reflection shows (you can draw a Venn
diagram to convince yourself), that mutual exclusivity of A and B implies
A C B¢, and so A( B¢ = A. In other words, P[A(B¢] = P[A] = .3

c Since A and B are mutually exclusive, they cannot occur simultaneously,
i.e. (“and” corresponding to “intersection”), A(\B = 0, and P[A(B] =
P=0



#9

Let Obe the wwalivy of the establishment’s cuswomers. The subsel A, of those
carrving American Express, has relavive [requency .24, and vhe subser V', of
thase carrying Visa has [requency .G1. We also have vhar vhe [requency ol
AMViis L1 1. What we are interested inis AV (American Express or Visa):

P [,4 Ul =P|[A]+ P[V]-P [,4 U Ve 2 61— 1= 1

#11 (C)

Call A the sev ol male cigarswe smokers, B vhe sey of male cigar smokers, and &
the seL of male smakers. Qur dava says P[A] = 28, P[B] = 07, P[A[B] = .05

a The sel of male nonsmokers is given by P[A°[) B, buy, since inuerseciions
are non direclly computable ram che axioms, i mighl be heller 1o use

Lhe [ac. thay
A B =) {.4 | B)

planp|=1-p[as]

=0 Lhat

and, since

P [_1Un] —PlA+P[B-P [.1(];;] = 28407 05=23
P [4ﬂB =1-3=07

b Here we are laoking au B4 A {elemenis in B, buw now in A}, Tuis easy vosee {use
a Venn diagram, 10 vou don’y ned chis obvious) vha, BY A = B (AN B),
and A B C B, sovhay

PIB\A =P [B\(ANB)| = PB]- P[AB] = .07~ 05 = 02

#12 (C)

Consider vhe percentage of suudenis in each language class. We have P[S] =
2B PF) = .26, P|G] = 16 (3 [or Spanish, I' lor Irench, and G lor Ger-
man}. We also have P[S[F] = .12, P[S[NG] = .4, P[F[G] = .06, and
PSOFNG] = .02

a We are looking aL the caomplement of S F|JG. This prababilicy is mas.
easily caleulaved by

r((sUrlJe)] =1-rsyre!



ang
pls\Jr|Jc| = Pisi+P(F+P(@-P [sO\F|-P[sa|-P[FN&] +
+P [sﬂ;ﬂr = 28+ 26+ .16—.12 — 04— .06+ .02 = .5

Hence 30% of the suudent are
Laking av least ane languane class, and 0% are Laking none.

I We need wo sublracy [rom P (S| FJG] che prababilivy af the InuersecLions,
ie. we are laaking s

P[SUFUG] - P[SNF]-P[SNG]-PIFNG|+2P[SNFNG|=
=5—.12—.04—.06+2 .02=.32

¢ Iow, we are looking au evenls Ey, the [irst siudeny is in a language class,
Es, the second suudent is in a language class, and ask or PlE, [J .
Thinking in vhe spiric of prablen (student in place of marbles, and ¢lasses
insead of colors, with whe appropriate variavions), we novice thar, au leasy
in principle, we should abide bv uhe mechod used vhere in poine 2 alier
all, ance we pick he [irse sLudent, the secand is picked [orm vhe remaining
00 - we don’y pick vhe same swndent vwice. However, this makes Lhe
caleilavion mare invalved, since, depending an what the [rs suident daoes,
we have dillerent adds or vhe second! This is a common problem in
“sampling”, when, [or instance i an apinion poll, we pick individuals “ay
randaom®, bue avoid picking vhe same individual wice, aliering Lhe paal
[or which we exirace au every Lurn. IC che ariginal pacl is large enough,
and the number of dividuals picked small enough, iu dossn’s make much
dillerence wherther wa “pu Lhe individual back in the poal™ ar nol. Aluer
all, lor example. 5 = 3, and 33 = 30303, so he dillerence s nou
very sipnilleant. I0 we wreal the problem like poiny | in problem , we have a
prababilivy of picking astudent than vakes anleasy ane class of 3 {see poin
a). The same happens [or Lhe second, [e. 30% of Lhe uime we pick [rs
a sludlent vhal Lakes a language elass, and, [or each of these allernavives,
0% af vhe Lime we will pick as secand a suuden. who takes ane class.
In avher words, we have a 0% chance of picking righl away a suudan
Laking a language olass, and 30% of the remaining 30% of picking Lhe
secand swudent waking a language class, when vhe lirsy dossn’e. Owverall,
A4+ .5-05 =54 .25 = .75 Il we wanu 1o Lake into account the change in
campazivion of the student population alter picking vhe [irsy suident, we
cauld arpue as [ollows: che [irsl suudent will take a class wich prababilivy
230 Ieow, i he dass no, the second suudent is picked [Fom 59, of whaom 30
eo vake a class. Hence, the prababilivy of aking a class is 53 = 50505 .. ..
The resule is thus 5+ .5- 50505 = 0.7523. ... Thus ouwr [irst soluion is
wrong by 0023, . Percentajie wise, this s an errar of :‘ = 00335457

Wheirher an errar of 0.3% is “larpe” or “small” depends, of course, on the
specilic applicalion we are considering.



415

Card games provide a wealth of combinatorial problems. To solve them quickly,
we need to refer to formulas developed in chapter 1. Specifically, the starting
point for these problems is to determine a finite partition of the sample space,
Q=Ui_, Ai (A4;NAj =0,i # j), such that our problem can be represented by
assigning the same probability to each A; : P[A;] = % The minimal sample
space in this case would be made up of n points, corresponding to each element
in the partition, with P [{w;}] = 1. Problems in such a setting are solved by
counting how many points (or atoms of the partition) fall in the requested event.
Moreover, the number of points, n, is determined by counting how many atoms
make up the partition.

There are 52 cards in a poker deck, and one hand consists of 5 cards picked
“at random”. It is usually assumed that “at random”, in this context, means
that the probability of any specific quintuplet is the same for all. How many
quintuplets can we build out of 52 cards? Well, we have 52 ways to pick the first
card, 51 for the second, and so on. That would indicate 52-51-50-49-48 = i—?:
However, the order in which we receive the cards is immaterial: AKQ or KAQ
or QKA, etc. all amount to the same triplet. Hence we divide by the number of
equivalent quintuplets, i.e. by all rearrangements of 5 cards - 5!. The result is

520 520 /52 [ 52
47150 (52 =5)150  \ 5 )\ 47

The last symbol is called a binomial coefficient, defined for integers n > k as

(5)=amm = (")

hands have the same probability, we have to

Assuming all possible ( 552

count how many hands constitute the various cases listed.

a A flush is when all 5 cards are from the same suit: here are 13 cards in each
13
5 (same
argument as above). There are 4 suits, so the possible ways to have a

flush are 4 - ( 153

suit, so the number of ways to extract 5 from one suit is

). Hence, the probability is

.. ( 13 )
5 .
_ 41,287 =.00198

( 52 ) 2,598,960

5

b One pair requires two cards to be the same, and the remaining three to be

different: given a card number, there are ( ) ways to pick two of them,

2



and ( 132 ) ways to pick the other three, so that they have all different

numbers. There are also 13 different card numbers we can choose. Finally,
each of the three numbers that appear in one hand can be picked in 4
different ways. The result is

(o) (5) e
(%)

¢ The argument for two pair is similar, with the following choices involved: pick

two out of the 13 possible numbers (( 123 )), pick two out of the four
available for each pair (( ;L )), and, finally, one (the fifth card) out of

the 44 remaining 44 cards (( 414 )), for an end result of

(5)(2) () (Y)
2 2 2 1
~ .048
52
5
d Three of a kind, is very similar to two of a kind. The same arguments, with
the appropriate changes, give

4 12
13(3)( : ).4.4
~ 021
52
5
e Four of a kind is in the same line, and even simpler, since we have to pick

four equal cards, and just one out of the remaining 12 numbers (for 48
cards total):

13-4-48
52
5
(not terribly common, but, hey, over thousands of hands, it is bound to
happen).

=~ .00096

416

Dice games are just as popular, and the counting is easier than for card games.
Throwing 5 dice, there are 6°possible outcomes (6 values for each die), and, as



above, o “Tair™ Loss would be ane whare all 67 auLeames have Lhe same proba-
bilicy. The nexu siep is o count how many ways Lhere are Lo gew Lhe aueome
dlescribed:

a Tar no wwa dice 1o show vhe same number, we have § ways [or Lhe [irs. die,
buL only 3 [or Lthe secand, 1 [or the third, eue. (sinee the previous dice
preempt some of the numbers). All in all {vou can mawch the [ormulas
with vhe numerical resulie given wich vour calewlavar),

6—15—6-5-4-3-2—1_3—!5mﬂ.093

.

. ' - ol .
b One pair cames up when we gl Lwo egqual polnls oul of 3 (( 5 )j, which

can happen in G dillerent ways. Nexu, the remaining vhree dice have 10
came up with dillerent poines, which vhey can in 5 -4 -3 ways:

e A [ull house, implies vau pick vwa dillerent poine, and Lhen Lhrse oul of Lhe
3 dice Lthan are now egual Lo the pair:

n
o
W= o
e

z IMive alike, is suraighy lorward: wou have G choices [or vhe painl caming up:



720

Blackjack s a particular [avorive of “combinaiorialisis™ in chis [eld, since Lhe
edleck is shullled rarely enough so uhay a player carelully counuing cards has a. a
certain paint ol the game vhe adds in his her [avor agains. the hause. Thal's
ane reason why vou will be gquickly vaken vo the door i management suspecLs
vall of cauning eards.

The game s played with each player, and Lhe dealar, being deall two cards.
Each payver, in wirn, can ask [or an exura card. The poal being w reach aspecilic
cambinaiion by adding cared poins {every K,QJ is worth 10 poins) o reach
21, withoul aversiepping it The dealer i= aL advaniage since he plays lasy, and
is Lhe winner in case of a ue. However, since the deck is now shullled every Lime,
a carelul count of cards will allow a (very) skilled plaver v evaluate vhe odds in
his ar her favar. You are [ree Lo check some of the many baoks an vhe game 10
learn vhe Lricks {one is by a [airly well-known machemadician, Toneseu-Tuleea).

Now, a “blackjack” iz a combinauion of ace and 10-point card (10,00 K)
which is the wop cambination Lo win. The prababilivy of being deall a Blackjack
is compured by noung vhay vou have 1 ways of being dealt an ace, and 16 af
bein;: deall a [0-poiny card (4 - 4), while the pos s-ible r}airi woll ean be deall are

- 51. Henee the probabilivy of a blackjack i 2. o= (vou can have either Lhe
ace ar vhe card being deale [irse). The probabilivy cn[ foth vau end Lhe dealer
baing dealy a black]ack is (P [A] + P[B] — P[A[B])

5 L- 16 5 L-16 b-4-16G-3-15
T B2-51 T B2-51 n2-51-50-49

which is approximacelvood7is Hence, the probabilivy ol weither vou nar Lhe
dealer having a blackjack is 1 —n004758 or about  ().905 24

#23 (C)

We have that all passible auleames can be classilisd as
I. [irsy die is higher
2. second die is higher

3. dice have the same painls

Clearly, by symmeiry, P[1] = P[2], while P[3] = & = & {ouw of the 36
possible outcomes, G are of the [orm (rx, =), since © = 1.2...., 61. Hence,
P2]=3(1-P[3) =43 = 4

T wald also be easy, insuch a small experiment, Lo Just count Lhe “favarable
aucomes”: [ the second die lands a 2, vhere are none, il i lands a 3, there is

ane, and sa gn: HEEEEES



Note that the prohability of throwing ¢, for

1 o012 |)
= —— - min .
a6 (I'.'_-‘ 12

Mesct, Ahe probabiliy of winning, assoming yvou threw @ at the five doss, PR,
is computed by obsorving that

o P[] = PE)] = P|Egp]=0
s Pl = FlEy| =1

o« PIE] =% 00— (p —-—p,—j]"_' i for all remaining s (it the proba-

hility of not throwing either ¢ or 7 in the first succeeding o — 1 throws,
and 1wt the nth, summed over all posdble n)

Thus, the probability of winning is

12 o
ZPJ PlE) =pr +pn =+ pr[l pi —pr)"
i=2

#2AT.01,02 n=l

1,1 . 1
==t = o =
@ 18 TRt o
2 2 173 4 5
s i - .
+ 1 — 42 R Ry ) 2 0,403
TP e R AN A TRAT

#27 (C)

Again, siandard assumpuions in vhis sewing are thau each of vhe 10 balls has
the same probabilivy of being picked up - i.e. thav each ball has individualiv,
and so vhay the prababilivy of picking a red hall is L:jj, while Lhal of picking a
black ane is 5.

The pame iz obviously [inive, since iL sLaps, AL Lhe laes, aller all 7 black
balls have been drawn. Henee the possible aucames can be described by lisuing
them as:

R:BR;BBR;BBBR; BBBER; BBBBER; BBRBBBEBR;, BRBEBBER

A wins in cage 1.,3,3,7. Ivow, all these evenis are [ar [ram equiprabable. To
lingl their prababilivy we can argus as [ollows:

. 3
] —
PlR| 10)
iwe alreacdy noved that)
R T4 21 T
> e e— e T — e —
P|BR] w9 00 a0

redl.

and sa an.



However, we can alsa think in verms of a larper sample space: consider Lhe
space al all possible sequences ol |10 excraciions of all balls. One paint in such
a space wolld be, e

BBRBRRBEBEDR

The possible sequences (remember Lhal each ball is individually discinguished,
is the number of possible arrangements of 10 iems: che lirst posicion can be
any <f the wen, the second any of Lhe nine lell alter picking the lirsy, the Lhird
any of vhe elghe lefl, ewc: number of arrangements Mpermutalions™) eguals 100,
elalinad b

M=n{n—-1){n—-2)...3-2-1

(Lhe [armal delinivion is by induction: 1! = 1;n! = n{n— 1), and iv wens o
L ke convenleny Lo agxree and defline 0 = 1)

The sequences carrespancing Lo a “win” by A are Lhose where the lirs, R
appears in an oded posivion, alver which, we don’s eare what happens. 5o, 1o
have an K come as [irsu can be done in 3 ways (one per red balll x the number
ol passible f-sequences, which we don'u care Lo lack a3 -9 Assuming thay
all 10! possible sequences are eguiprobable, the prababilivy ol gewing a red ball
[irsrL waldd then be f\—,‘.' = 5 (10! = 10- 91}, The first B will be the third ball
il the [irsu two are Black, which would happen in 7- 6 possible ways, the chird
s an K {which has 3 possible ways of happening, and che remaining 7 pleks
ate whalever they may, which would happen in 7! possible ways. Allagecher,

T-6G-3-TL Proceading like this we end up with vhe fornuda
3N 4+T7-6-5-TM4+7-6-5-4-3-8'4+7-6-5-4-3-2-1.3
1!
#28 (C)

Ivave chay vhal, in the first meithaod, vhe Lhree balls are selecied simulianecusly,
which is the same as selecling Lthem one by ane, withoul pulling them back in
the wrn aller seleciian.

a There are & red, G blue, and & preen balls, lor a woval of 19, Hence, the ways
La pick Lhree reds are (the arder in which vhey are picked being irrelevant)

5 } -
( ; ) three blue are ( [; ) andl three pireen ( :3 ) aut af a Local of

i
( lg] ) Resuly is



3 possible aucomes, we have 3 ways w pick a red ball, G
ways Lo plck a blue, and & ways Lo pick & preen:

149
I Ower Lhe (

-G-8
19
3

Il we replace each ball aller seleciion, probabilivies of picking a specilic colar do
now change from the firsy w the third seleciion: o for red, & for blue, and 5

[ar preen. Hence
5\° 6° 8yt
w) Tlw) s

h We have all evenis af Lhe larm B[ B[ in all arders. Hewvever, since sach
selecLion is Just like vhe [irst, we have thau the prababilivy of each possible
sequsnee of thres dillerent colors is

a We have

5-6.8
183

There are G dillerent arrangements (RBC,RCB,BRC, BCR.CRB,CBR),

and hence the [inal resulu is

6+ e~ 0.21

#47 (C)

This a variation ol a [amaous “paradoe’™ assuming Lhan the probabiivy ol having
one’s birthday on any given day of the year is o (which does now happen 1o
be e, bu, hev. ), how many people should vou gacher an random so thay the
probabilivy that al least vwo of vhem share vheir birthday is greaver than 17
The answer is surprisingly low. In [act, the probabilivy chat na vwa ol af 1
share vheir birtheay can be calewlaved as [ollows (ol course, we need n < 365):
lacking av Lhe n people in sequence, the ity can have 363 passible birvhdays,
Bt vhe secand anly 361 (avherwize they wauld share their birthday), vhe vhird
363, and so an, down Lo 365 — (n — 1). On vhe avher hand, il each individual ean
have any birthday, the voval number of possible arranpements is 365" Hence
the probabilivy vhay no wwo share the same hirvheay is

365!
(365 —n )l365"

pin) =

By programming vhis expression and checking [or a [ew values, iL is easy L0 s2e
thay pi(n) decreases as n increases {Lhau’s preuwy abwious), and thal p(22) =

[



.52,p(23) = .49. In fact, p (50) = .0296, and so on, rapidly decreasing! As for
our class, if all 35 “slots” were taken, plus your instructor, it would amount to 36
people, and, under this model, the probability of having no common birthdays
is p (36) = .1678. See example 5i, on page 39 of the book.

As for the problem at hand, we have similarly that for none to share their
birth month, they can have 12! ways of arranging them, out of a total of 12'2,
yielding a probability of Lo

o6 & 5.37-107°

+50

At bridge, each of the four player (they form two teams at the table) is dealt
13 cards. There are plenty of possible hands, but we are looking at your hand

and your partner’s only. So, you can have ( ?g ) possible hands, and, from

3 .
13 possible deals.

Now, you hope to get 5 spades (out of 13), and 8 other cards (out of 52—13 =
39 non-spade cards), while your partner is supposed to get all of the remaining

8 spades (out of 8, that is), and 5 other cards, from the 39 — 8 = 31 remaining

cards. Al in all, ( 1 ) ( 389 ) ( : ) ( 3 )
BI6

the remaining 39 cards, your partner has

454

The trick here is in the “at least”: the number listed corresponds to the proba-
bility of having ezactly one void suit. But we need to account for cases where
we have 2 or 3 void suits as well. In other words, denoting by S, H, D, C the
events that spades, hearts, diamonds or clubs are void, we have as probability
for at least one void suit

P[S]+P[H|+P [D|+P[C]-P {SHH}—P [SHD} P [SﬂC’} P [HﬂD} -
_P [Hﬂc}—P {Dﬂc]uﬂ [SﬂHﬂD}—FP [SﬂHﬂC}—FP {Sﬂpﬂc} +
4P [HﬂDﬂC’]

By symmetry, events in each group (the first 4 terms, the next 6, the last 4)
have the same probability.
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The first four add up to the “wrong” answer. The second group of 6 adds up
( 1 )
13
67
52
13

and the third group of 4 adds up to

to

for a total of

15



