Solutions to the Problems in the First
Assignment

Math 394 B & C

We use the more common notation A() B for the intersection of the sets
A and B (rather than AB, as in the book), and denote inclusion by A C B,
rather than A C B, to distinguish between the possibility that A = B, and
the exclusion of it (this is also the more common notation in mathematical
literature). We will denote the enclosing set by  (again, following common
practice), so that all sets considered below are subsets of 2, and, in particular,
Ec=Q\FE
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One way to prove the statement is to calculate
hence F( F C E, and
e (EUF) - (EUE) Ur=Ee|F

sothat EC E|JF
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If EC F, then E(\F = E, so that (ENF)° = E°|JF° = E°, which proves
that F¢ C E°
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Note that F|J E° = Q, hence, (FNE)U(FNE)=FN(FUE®)=FNQ=
F'. The other relation is proved exactly in the same way.
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The delicate point is in the precise definition of |J;=, E;, and (.2, E;. The
first is the smallest subset of Q containing all |J;' ; E;, ¢ = 1,2,.... Since, by
induction,
FN (LJ Eh) - (F‘(]ZQ)
i=1 i=1

it is easy to see that any w € (J;_, (F/() E;) will belong to | J_, E;, from which
the statement follows. The second statement is proved in the same way, ex-
changing “smallest set containing all finite unions” with “largest set containing
all finite intersections”.
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We can define
i—1
F, = B4, Fi=E\|JF: i=23,...
k=1

Now, any union can be written as the union of disjoint sets. Of course, P [F;] <
P [E;]. Hence, we have

Un|-r|Ux
i=1 i=1

That is, we can prove, from the countable additivity of the probabilities of
disjoint sets, the countable subadditivity of the probability of sets.
The idea can be pushed further. For example, define

P =P

:ZP[Fi] < ZP[EZ]

n=FEK, I :EiUFifl

Now, the sequence {F;} is increasing, since F; C Fy C ..., so that any union
can be written as the limit of an increasing sequence of sets. A similar argument
shows that any intersection can be written as the limit of a decreasing sequence
of sets. It follows that we can use the property of “continuity as set function”
for probabilities as alternate axioms, in place of countable additivity. In fact, if
you look at the proof of Proposition 6.1 in the book, you see that we only need
continuity over increasing, or over decreasing sequences, to prove the other, and
consequently, countable additivity.
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(a) We can use the distributive property to conclude
(EUF) N (EUF) - £ (FUF) ~EQ=E

(b) We can use now the associative and commutative properties, together with
point (a), and conclude, after applying again the distributive property at
the end,

(c) Similarly,

(for example, (EUF)(FUG) = (FN[EUF)U(GNIEUF]), and
(FO[EUF]) = F, while (GNIEUF)]) = (GNE)U(GNF), so we end
up with FU(GNE)U(GNF), and since F|J(GNF) = F, we hav the

result)
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Since we are dealing with a finite number of experiments (n), we only need to
check finite unions. We obviously have

0<ME)
n

and, if £ and F are disjoint, they will never occur together, so that n (E|J F) =
n (E)+n (F), from which additivity follows immediately. Of course, n (S) = n,
which covers the last of the three axioms.
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The easy way is to use Venn diagrams, with the intuition that “probabilities”
assign a “weight” to any portion of a set. The idea is, of course, to “count” how
many times we are “counting” parts the belong to two or three of the sets.
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Note that P[E|JF] = P[E]+ P[F]— P[E( F] <1, so, indeed,

P[EﬂF] > P[E|+ P[F] -1
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In logic terms, this situation corresponds to “XOR”, “exclusive or” (either one
or the other, but not both). Since E () F is a subset of both E and F, we need
to subtract its probability from both.
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One way to prove this is to note that

=) (FUF) = (ENF)U(ENF)
where the union is of disjoint sets (since F'[)F°¢ = (). Hence,
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