Prove the following relations.

- **1.** $EF \subset E \subset E \cup F$.
- **2.** If $E \subset F$, then $F^c \subset E^c$.
- 3. $F = FE \cup FE^c$, and $E \cup F = E \cup E^cF$.

4.
$$\left(\bigcup_{i=1}^{\infty} E_i\right) F = \bigcup_{i=1}^{\infty} E_i F$$
, and $\left(\bigcap_{i=1}^{\infty} E_i\right) \cup F = \bigcap_{i=1}^{\infty} (E_i \cup F)$.

4. $\left(\bigcup_{i=1}^{\infty} E_i\right) F = \bigcup_{i=1}^{\infty} E_i F$, and $\left(\bigcap_{i=1}^{\infty} E_i\right) \cup F = \bigcap_{i=1}^{\infty} (E_i \cup F)$. **5.** For any sequence of events E_1, E_2, \ldots , define a new sequence F_1, F_2, \ldots of disjoint events (that is, events such that $F_iF_j=\emptyset$ whenever $i\neq j$) such that for all $n\geq 1$,

$$\bigcup_{1}^{n} F_{i} = \bigcup_{1}^{n} E_{i}$$

- 7. Find the simplest expression for the following events:
 - (a) $(E \cup F)(E \cup F^c)$;
 - **(b)** $(E \cup F)(E^c \cup F)(E \cup F^c)$;
 - (c) $(E \cup F)(F \cup G)$.
- 9. Suppose that an experiment is performed n times. For any event E of the sample space, let n(E) denote the number of times that event E occurs, and define f(E) = n(E)/n. Show that $f(\cdot)$ satisfies Axioms 1, 2, and 3.
- **10.** Prove that $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(E^c F G) P(E F^c G)$ $P(EFG^c) - 2P(EFG).$
- 11. If P(E) = .9 and P(F) = .8, show that $P(EF) \ge .7$. In general, prove Bonferroni's inequality, namely,

$$P(EF) \ge P(E) + P(F) - 1$$

- 12. Show that the probability that exactly one of the events E or F occurs equals P(E) + P(F) - 2P(EF).
- **13.** Prove that $P(EF^c) = P(E) P(EF)$.