
Solutions to Some More Problems

Math/Stat 394

1 Quizzes

1.1

In the following list, mark the statements that are possible, leaving those that
are impossible blank.

⊗ EX = 3, EX2 = 9 It’s a limit case, but it results in V ar [X ] = 9 − 32 = 0,
which corresponds to a “degenerate” random variable, but is still legal.

© EX3 = −2, EX does not exist - this cannot be: in general, if E [Xn] is well
defined, then all moments E

[

Xk
]

, k < n are also well defined.

⊗ EX = −2, EX2 = 5 This presents no problem at all (V ar [X ] = 5− (−2)
2
=

1)

© EX = 0, V ar [X ] = −1 Obviously, we cannot have a negative variance

1.2

In the following list, mark the statements that are always true.

© E [XY ] = E [X ]E [Y ] This is true only if X and Y are uncorrelated (for
example, if they are independent)

⊗ E [X + Y ] = E [X ] + E [Y ] This is linearity of the expectation

© E
[

X

Y

]

= E[X]
E[Y ]

© E
[√

X
]

=
√

E [X ]

The last two are false, unless X is a constant.
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1.3

Let X be a continuous RV, with a density fX(x) that is equal to zero for x < 0,
and positive for x ≥ 0. Let FX be the corresponding cdf. In the following list
mark the statements that are certainly true.

⊗ FX (0) = 0 From what we know,
´ x

−∞
fX (t) dt = 0 for x ≤ 0

⊗ FX (−1) = 0 See above

© FX (1) = 0 On the other hand, fX (x) > 0 for 0 ≤ x ≤ 1, so the cdf, as its
antiderivative, cannot be zero.

© limx→∞ FX (x) = 0 This is never true.

© limx→∞ FX (x) = 1
2 Same here.

⊗ limx→∞ FX (x) = 1 This is always true, regardless of any detail about the
density.

2 Problems

2.1

Traffic flows into a highway from two separate feeders. A simple model is the
following: we look at small time intervals of length h (for example 10 seconds),
and the probability of one car coming in from feeder i (i = 1, 2) in each time
interval is λi · h, where λi > 0 is a constant. Assume each feed cannot produce
more than one car in each time interval. We consider the number of cars entering
the highway over a fixed time interval T (e.g., T = 1 hour).

1. What is the probability mass function for the number of cars entering
from feeder i (P [Ni = k], where Ni is the number of cars entering from
feeder i)?

2. What is the probability mass function for the total number of cars entering
the highway, N = N1 +N2

3. In the limit h → 0, what do these three pmf’s become?

Solutions

1. Since this is a binomial model

P [Ni = k] =

(

1 · 1
h

k

)

(λi · h)k (1− λi · h)
1

h
−k

(we are assuming that 1
h

is an integer - the number of time intervals of
length h in the time between 0 and T = 1)
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2. Adding up two independent binomially distributed random variable, does
not, in general result in a binomial random variable. One way to see this
is to consider the number of trials to have a success: being independent,
the probability that the neither happens (hence, the distribution of the
first combined success) is going to be determined (let’s write pi = λi ·h for
short) by the geometric distributions of the first successes (call the time
interval of first arrival Ti)

P [min (T1, T2) > n] = P [T1 > n, T2 > n] = P [T1 > n]P [T2 > n] =

= (1− p1)
n
(1− p2)

n
= (1− p1 − p2 + p1p2)

n

which corresponds to a geometric distribution with parameter p1 + p2 −
p1p2. On the other hand, the probability of both feeds producing one car
at the same time is, by independence, p1p2 = λ1λ2h

2. The probability
of one car, from either feed, is them p1 + p2 − 2p1p2. Since all trials are
independent, once we have an arrival, we start again from scratch, and
by successive arrival times, we have that the sum over a fixed amount of
time will be multinomial. If we neglect the term in h2, this reduced to a
binomial distribution, with parameter

(

1
h
, p1 + p2

)

.

3. In the limit h → 0, the binomial distributions will turn into Poisson. By
definition of the Poisson distribution,

P [Ni = k] =
(λi · 1)k

k!
e−λi·1 =

λk

i

k!
e−λi

As for the minimum, it will converge to a binomial with parameter λ1 +
λ2, since the term p1p2 = λ1λ2h

2 will vanish in the limit as h → 0.
With a similar argument as the one in point 2, adapted to the Poisson
case, which corresponds to a exponential distribution for the time of first
arrival, one can show directly that the sum of two independent Poisson
variables is distributed as Poisson, with a parameter equal to the sum of
the parameters.

2.2

A simplified (but actually used in practice) stock market model is as follows.
Starting from an initial price of X0 > 0, a stock changes its price at every trade
by moving, at the nth trade, from Xn−1 up to Xn = uXn−1 (u > 1). or down
to Xn = dXn−1 (d < 1). We assume that the move will be up with probability
p, and down with probability 1 − p. For simplicity we assume u = 1 + c, d =
1− c, 0 < c < 1.

1. Consider Xm, the price after m trades. Its distribution is not one of the
standard ones listed in the book, but has a fairly simple connection to a
very standard distribution. Describe the distribution of Xm by a formula
or in some other precise way.
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2. Assume now that m is very large (mathematically, we are thinking of
m → ∞), and c very small (that is, c → 0). How can we approximate the
distribution of Xm? Note that, to make this into a precise mathematical
limit, we need to assume that the rates for m and c are strictly related.

Hint: The easiest way to handle these questions is to look at the sequence
Y0, Y1, . . . , Ym, with Yk = log (Xk), that is Xk = eYk

Solutions

1. Since log (Xk) takes two values, log u > 0, and log d < 0, this is a variation
on the Bernoulli distribution. Specifically, the up movements follow a
Bernoulli distribution with parameter p, and the down movements, one
with parameter 1 − p, with the result being the difference between the
two. Over a total of m trades, the result will be k · log u+ (m− k) · log d,

with probability

(

m

k

)

pk (1− p)
m−k

2. Since we are not touching the probability p, this calls for the Central
Limit Theorem. For this to work, we need the number of steps, m, and
the amount of each step, c, to be connected. First note that the expected
logarithm of the price after m steps is logX0 +m (p logu+ (1− p) log d).
In the limit of small c, assuming u = 1+c, d = 1−c, we have (log(1+x) ≈
x)

E logXm ≈ logX0 +mc(2p− 1)

On the other hand, the variance will be

V ar [logXm] = m (log u− log d)2 p(1− p) ≈ 4mc2p(1− p)

The standard way is to assume that, instead of a fixed size c, we have a
variable size keeping c2m (approximately) constant (the same will then
hold for

√
mc). Let’s write σ2 = 4mc2p(1 − p) and

√
m ·

√
mc(2p− 1) =√

m · µ for short. The CLT governs the distance between logXm and its
expected value:

lim
m→∞

P

[

logXm −√
mµ− logX0

σ
≤ x

]

= Φ(x)

that is, applying the binomial Central Limit Theorem, the result will
be approximately Gaussian. Going back to the product of the Xk, that
will be approximately lognormal : the density of logXm − logX0 being
approximately normal with mean

√
mµ and variance σ2, the ratio final

price/initial price will have an approximate distribution

P

[

Xm

X0
≤ x

]

= P [logXm − logX0 ≤ log x] =
1√
2πσ2

ˆ log x

−∞

exp

{

(u−
√
mµ)2

2σ2

}

du
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The assumption of independence in the succeeding price steps is crucial, so this
model is limited in this respect to situations where “herd effects” are absent. It
is the basis of the famed Black-Scholes Formula, for the pricing of “European”
options. Since the log-normality assumption leads to an explicit formula (in-
volving Φ, of course), brokers used to have calculators at hand, with the formula
pre-programmed.


