Midterm \#1 - Solutions

Math/Stat 394

1 Quizzes

1.1

Let A be the event "Andrea and Bill are both in class". The complementary event is (choose one):
$\bigcirc A^{c}=" N e i t h e r$ Andrea nor Bill are in class"
$\bigcirc A^{c}=$ "Bill is not in class"
$\otimes A^{c}="$ At least one of the two is not in class"
$\bigcirc A^{c}=$ "Andrea is not in class"
Discussion: If it is not true that both are in class, then at least one must not be there. We can also formalize the statement: let $C_{A}=$ "Andrea is in class", and $C_{B}=$ "Bill is in class". $A=C_{A} \bigcap C_{B}$, so that

$$
A^{c}=\left(C_{A} \bigcap C_{B}\right)^{c}=C_{A}^{c} \bigcup C_{B}^{c}
$$

i.e., either on or both are not in class.

1.2

Which of the following statements would imply that two events, A, B, with $P[A]>0, P[B]>0$ are such that $P[A \mid B]=P[B \mid A]$?
$\bigcirc A$ and B are independent
$\bigcirc B \subseteq A$
$\bigcirc P[A \bigcup B]=2 P[A \bigcap B]$
$\otimes P[A]=P[B]$
Discussion: We need $\frac{P[A \bigcap B]}{P[B]}=\frac{P[A \bigcap B]}{P[A]}$.

1.3

Suppose we have two events A, B, and $P[A]>0, P[B]>0$. Which of the following is always true?
$\bigcirc P[A \mid B] \neq P[B \mid A]$
$\otimes P[A \mid B]=1-P\left[A^{c} \mid B\right]$
$\bigcirc P[A \mid B]=1-P\left[A \mid B^{c}\right]$
$\bigcirc[A \mid B]=P[A]$ if, additionally, $A \bigcap B=\emptyset$
Discussion: For fixed $B, P[\cdot \mid B]$ is a probability. Hence, it satisfies all the axioms and basic properties of probabilities, including the fact that the probability of an event is equal to $1-$ the probability of its complement. As for the other option, the first one is often true, but not always (its opposite requires $P[A]=P[B]$, due to Bayes' Formula). The third is unlikely, as conditioning to an event or to its complement are unrelated operations. The last is always false (it means A and B are independent and disjoint, at the same time), unless $P[A]=0$, that is in a trivial case.

2 Problems

2.1

We toss two independent "fair" dice. Let $X_{i}: i=1,2, \ldots 6$, and $Y_{j}: j=$ $1,2, \ldots, 6$ be, respectively, the events such that the first die comes out with i points, and the second die with j points. Let $Z_{k}: k=2,3, \ldots, 12$ be the event that the sum of the two is equal to k. Compute

1. $P\left[Z_{5} \mid X_{2}\right]$
2. $P\left[X_{2} \mid Z_{5}\right]$

Solutions:

1. If the first die turns out 2 , the only way for the sum to be 5 is if the second die turns 3 , which has probability $\frac{1}{6}$. More formally,

$$
P\left[Z_{5} \mid X_{2}\right]=\frac{P\left[Z_{5} \bigcap X_{2}\right]}{P\left[X_{2}\right]}=\frac{P\left[X_{2} \bigcap Y_{3}\right]}{P\left[X_{2}\right]}=\frac{\frac{1}{36}}{\frac{1}{6}}=\frac{1}{6}
$$

2. We can use Bayes' Rule now:

$$
P\left[X_{2} \mid Z_{5}\right]=\frac{P\left[Z_{5} \mid X_{2}\right] P\left[X_{2}\right]}{P\left[Z_{5}\right]}=\frac{\frac{1}{6} \cdot \frac{1}{6}}{\frac{4}{36}}=\frac{1}{4}
$$

We can also argue directly: if the sum is $5, X$ can be either $1,2,3$, or 4 , each outcome having the same probability.

2.2

We throw a fair six-sided die. Let D_{k} be the event that the die turns up k $(k=1,2, \ldots, 6)$. Depending on the result of the toss, if we observe D_{j} (that is, the die comes up with j points), we flip j fair coins. Let E_{i} be the event that the number of heads that result from the flips is i (for example, if D_{3} occurred, and the flips result in $H H T$, the corresponding event is E_{2}).

1. Write a formula for $P\left[E_{i} \mid D_{j}\right]$. For which values of i and j is this conditional probability equal to zero?
2. Calculate $P\left[E_{4}\right]$
3. Calculate $P\left[D_{5} \mid E_{4}\right]$

$$
\begin{aligned}
& \text { Solution: } \\
& \text { 1. We are tossing } j \text { coirs, } k \text { of which are to be heads. We clearly need } \\
& 1 \leq j \leq 6 \text {, and } 0 \leq k \leq j \text {. Toe probability of } k \text { hends out of } j \text { tosses is } \\
& \binom{j}{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{j-k}=\binom{j}{k}\left(\frac{1}{2}\right)^{i} \\
& \text { (sinct the coins are fair). } \\
& \text { 2. By the total protability fommula, } \\
& P\left[E=k \left\lvert\,=\sum_{j=1}^{i} P[E=k \mid D=j] P[D=j]=\sum_{j=1}^{6}\binom{j}{k}\left(\frac{1}{2}\right)^{j} \frac{1}{6}\right.\right. \\
& \text { (where we agree that }\binom{j}{k}=0 \text { when } k>3 \text {). For } k=4 \text {, } \\
& P[E-4]=\sum_{j=1}^{6}\binom{j}{4}\left(\frac{1}{2}\right)^{3} \frac{1}{6}=\frac{1}{6}\left(\frac{1}{2^{4}}+5 \frac{1}{2^{3}}+\frac{6 \cdot 5}{2} \frac{1}{2^{n}}\right)=\frac{1}{6 \cdot 16}\left(1+\frac{5}{2}+\frac{15}{4}\right)= \\
& =0.0 .076521 \\
& \text { 3. Using Bayes' Rule, } \\
& P|D=5| E=4]=\frac{P[E=4|D=5| P[D=5]}{P \mid E=4]}=\frac{5 \cdot \frac{1}{4} \cdot \frac{1}{\pi}}{0.075521}=.31483
\end{aligned}
$$

2.3

A transmission channel delivers bits (0 s and 1 s) at a rate of $60 \% 0 \mathrm{~s}$ and $40 \% 1 \mathrm{~s}$. Suppose that, due to noise, a 0 is transmitted as a 15%, and a 1 is transmitted as a 03% of the time.

1. What is the probability that a given bit is correct?
2. You receive two bits as 11 . What is the probability of both being correct if bits arrive independently
3. *A "parity check" bit is added to every pair of bits: this third bit is a 1 if the two bits are different, and 0 if their equal. This bit is obviously subject to the same noise as the others. A triplet is received as 110. What is the probability that the two meaningful bits were indeed 11? Compare with the same question when we receive a 11 , no bit parity is added.

Solutions:

1. Let C be the event that the bit arrived correctly, and S_{0}, and S_{1} the events that the transmitted bit was, respectively, a 0 or a 1 . By a familiar formula

$$
P[C]=P\left[C \mid S_{0}\right] P\left[S_{0}\right]+P\left[C \mid S_{1}\right] P\left[S_{1}\right]=.95 \cdot .6+.97 \cdot .4=.958
$$

2. Assuming independence of the two bits, If no parity bit is added, and we receive a 11 , the probability that the transmission is correct is

$$
P\left[S_{1}^{1} \bigcap S_{1}^{2} \mid R_{1}^{1} \bigcap R_{1}^{2}\right]=\frac{P\left[S_{1}^{1} \bigcap R_{1}^{1} \bigcap S_{1}^{2} \bigcap R_{1}^{2}\right]}{P\left[R_{1}^{1} \bigcap R_{1}^{2}\right]}
$$

Both the numerator and denominator can be factored, since the two bits are independent:

$$
P\left[S_{1}^{1} \bigcap R_{1}^{1} \bigcap S_{1}^{2} \bigcap R_{1}^{2}\right]=P\left[S_{1}^{1} \bigcap R_{1}^{1}\right] P\left[S_{1}^{2} \bigcap R_{1}^{2}\right] \quad P\left[R_{1}^{1} \bigcap R_{1}^{2}\right]=P\left[R_{1}^{1}\right] P\left[R_{1}^{2}\right]
$$

We also have

$$
\begin{gathered}
\frac{P\left[S_{1}^{1} \bigcap R_{1}^{1}\right]}{P\left[R_{1}^{1}\right]}=\frac{P\left[R_{1}^{1} \mid S_{1}^{1}\right] P\left[S_{1}^{1}\right]}{P\left[R_{1}^{1} \mid S_{1}^{1}\right] P\left[S_{1}^{1}\right]+P\left[R_{1}^{1} \mid S_{0}^{1}\right] P\left[S_{0}^{1}\right]}= \\
\quad=\frac{0.97 \cdot 0.4}{0.97 \cdot 0.4+0.05 \cdot 0.6}=\frac{.388}{.418} \approx .928
\end{gathered}
$$

The same calculation holds for the second bit, so that we end up with the square of this number, approximately 0.86 . As we can check from the last question, adding a parity bit enhances the reliability considerably.
3. Consider all possible events resulting in us receiving 110 :

- 11 was transmitted, arrived correctly, and the parity bit arrived correctly as well.
- One of the two leading bits arrived wrong (this can happen in two ways), and the parity bit arrived wrong as well.
- Both main bits arrived wrong (a 00 was transmitted), and the parity bit arrived correctly.

We are obviously assuming that all bits arrive correctly or not independently from each other. Let's call S_{i}^{j} the event that the j-th bit transmitted was i, and R_{i}^{j} the event that the j-th bit was received as i. We are asking for

$$
P\left[S_{1}^{1} \bigcap S_{1}^{2} \mid R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3}\right]
$$

Note that the conditioned event, $S_{1}^{1} \bigcap S_{1}^{2}$ is the same as $S_{1}^{1} \bigcap S_{1}^{2} \bigcap S_{0}^{3}$, since the first two bits determine the third. It is natural to apply Bayes' formula:

$$
P\left[S_{1}^{1} \bigcap S_{1}^{2} \mid R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3}\right]=\frac{P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{1}^{1} \bigcap S_{1}^{2}\right] P\left[S_{1}^{1} \bigcap S_{1}^{2}\right]}{P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3}\right]}
$$

Looking at the three probabilities in the formula we can say

- $P\left[R_{1}^{1} \cap R_{1}^{2} \cap R_{0}^{3} \mid S_{1}^{1} \cap S_{1}^{2}\right]$ is the probability that the two leading bits, 1's, arrived correctly, and, hence, that the parity bit, which must have been a 0 , arrived correctly. Since bits travel independently of each other, that's equal to $.97 \cdot .97 \cdot .95=0.893855$.
- $P\left[S_{1}^{1} \cap S_{1}^{2}\right]$ is the probability that two 1 's were transmitted, which, again by independence, occurs with probability $.4 \cdot .4=.16$.
- $P\left[R_{1}^{1} \cap R_{1}^{2} \cap R_{0}^{3}\right]$ is the probability of our observation to occur, and that is the result of one of the three events listed at the beginning to occur. By the usual formula, we have

$$
\begin{gathered}
P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3}\right]=P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{1}^{1} \bigcap S_{1}^{2}\right] P\left[S_{1}^{1} \bigcap S_{1}^{2}\right]+ \\
+P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{1}^{1} \bigcap S_{0}^{2}\right] P\left[S_{1}^{1} \bigcap S_{0}^{2}\right]+ \\
+P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{0}^{1} \bigcap S_{1}^{2}\right] P\left[S_{0}^{1} \bigcap S_{1}^{2}\right]+ \\
P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{0}^{1} \bigcap S_{1}^{2}\right] P\left[S_{0}^{1} \bigcap S_{0}^{2}\right]
\end{gathered}
$$

Looking at each of the terms, we have

- $P\left[S_{1}^{1} \cap S_{1}^{2}\right]=.4 \cdot .4=.16$
- $P\left[S_{0}^{1} \bigcap S_{1}^{2}\right]=P\left[S_{1}^{1} \bigcap S_{0}^{2}\right]=.4 \cdot .6=.24$
- $P\left[S_{1}^{1} \cap S_{1}^{2}\right]=.6 \cdot .6=.36$
- $P\left[R_{1}^{1} \cap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{1}^{1} \cap S_{1}^{2}\right]$ is the probability that the leading bits, both 1 s , and the parity bit, a 0 , all came in correctly. We already calculated this term:. $97 \cdot .97 \cdot .95=0.893855$
- $P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{1}^{1} \cap S_{0}^{2}\right]=P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{0}^{1} \bigcap S_{1}^{2}\right]$ is the probability that one of the two leading bits, which was a 0 , came in corrupted, while the other was received correctly, and the parity bit, being a 1 , was also corrupted. That's equal to $.97 \cdot .05 \cdot .03=0.001455$
- $P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{0}^{1} \bigcap S_{0}^{2}\right]$ is the probability that both leading bits, 0 s , arrived corrupted, and hence the parity bit was transmitted correctly. This probability is $.05 \cdot 0.05 \cdot 0.95=0.002375$

Collecting all the above,
$P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3}\right]=0.893855 \cdot .16+2 \cdot 0.001455 \cdot .24+0.002375 \cdot .36=0.1445702$
and we end up with

$$
\frac{P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3} \mid S_{1}^{1} \bigcap S_{1}^{2}\right] P\left[S_{1}^{1} \bigcap S_{1}^{2}\right]}{P\left[R_{1}^{1} \bigcap R_{1}^{2} \bigcap R_{0}^{3}\right]}=\frac{0.893855 \cdot .16}{0.1445702} \approx 0.989255
$$

