Silk-like secretion from tarantula feet

An unsuspected attachment mechanism may help these huge spiders to avoid catastrophic falls.

Spiders spin silk from specialized structures known as abdominal spinnerets — a defining feature of the creatures1— and this is deployed to capture prey, protect themselves, reproduce and disperse. Here we show that zebra tarantulas (Aphonopelma seemanni) from Costa Rica also secrete silk from their feet to provide adhesion during locomotion, enabling these spiders to cling to smooth vertical surfaces. Our discovery that silk is produced by the feet provides a new perspective on the origin and diversification of spider silk.

Spider feet have a ‘dry’ attachment system that relies on van der Waals forces generated by thousands of spatulate hairs2. Additionally, small distal claws enhance adhesion to rough surfaces by mechanically interlocking with the substrate. We have discovered that the tarantula A. seemanni (Fig. 1) has a third attachment mechanism, which depends on fibres exuded from nozzle-like structures on its feet. These fibrous secretions (Fig. 2) function as silken threads and, when laid down on glass plates, appear as ‘footprints’ that consist of dozens of fibres with diameters of 0.2–1.0 micrometres and lengths of 100–2500 micrometres (for details of analyses, see supplementary information).

Individual tarsal silk fibres often start as a flattened plaque. This seems to be secreted as a viscous fluid that solidifies, gluing the thread to the substrate. The function and morphology of the tarantula’s tarsal silk resembles the adhesive agent produced by the spinnerets of the spider Antrodiaetus unicolor3, as well as the attachment (pyriform) silk that many spiders use to cement their draglines to substrates. As it started to slip down the glass, while the dense setae in adjacent regions were held off the surface.

Our discovery of secreted tarsal silk forces a reconsideration of the evolution of spider silks4,5,6. Depending on its distribution across spider phylogeny, tarsal synthesis of silk could represent the ancestral condition, with silk apparatus of spiders seems to be controlled by developmental modules that can be expressed in a variety of body parts.

Investigation of the genes involved in tarsal silk production should resolve whether the original function of spider silk was to increase traction or whether it was later co-opted for that purpose. Spinneret silk proteins are encoded by a gene family that has evolved through a series of gene duplications and subsequent modifications for particular tasks7–11. If tarsal silks belong to the same gene family, then comparison of tarsal and spinneret silks should help our understanding of the ancestral function and composition of spider silk.

Stasislav N. Gorb*,†, Senta Niederegger*,‡, Cheryl Y. Hayashi*, Adam P. Summers||, Walter Völtsch†, Paul Walther‡

*Evolutionary Biomaterials Group, Max Planck Institute for Metals Research, 70569 Stuttgart, Germany
e-mail: s.gorb@imf.mpg.de
†Max Planck Institute for Developmental Biology, 71067 Tübingen, Germany
‡Institute of Forensic Medicine, Friedrich Schiller University of Jena, 07743 Jena, Germany
||Department of Biology, University of California, Riverside, California 92521, USA

Figure 1: Costa Rican zebra tarantula, Aphonopelma seemanni. Female, anterior view. Scale bar, 5 mm.

Figure 2: Tarsal silk production by the spider Aphonopelma seemanni. a, Fibres left behind (arrowheads) by a spider sliding down a vertical glass surface. Black arrow indicates direction of sliding. The spherical structures are the distal part of the tarsus (scopula), covered with hairs and spigots. b, Traces left by the tarsus of a spider walking on a coverslip. c, Single fibres observed by cryo-scanning electron microscopy. d, Tip of a tarsal spigot with the opening obstructed by silk. e, Tarsal spigot broken near the base. Scale bars: a, 500 µm; b, 10 µm; c, 1 µm; d, 2 µm; e, 5 µm.

Supplementary information accompanies this communication on Nature’s website.
Received 3 July; accepted 25 August 2006.
Competing financial interests: declared none.

www.nature.com/bca

©2006 Nature Publishing Group