Introductíon to Chemícal Engíneeríng Computíng

by

Bruce A. Finlayson Rehnberg Professor of Chemical Engineering Department of Chemical Engineering, Box 351750 University of Washington Seattle, WA 98195-1750

> http://faculty.washington.edu/finlayso/ finlayson@cheme.washington.edu 206-685-1634; FAX: 206-685-3451

Table of Contents

Preface	8
Chapter 1. Introduction	11
Organization	12
Algebraic Equations	12
Process Simulation	13
Differential Equations	13
Appendices	14
Chapter 2. Equations of State	16
Equation of state – mathematical formulation	16
Solving equations of state Using Excel (Single equation in one unknown)	19
Solution using 'Goal seek'	19
Solution using 'Solver'	20
Example of a chemical engineering problem solved using 'Goal Seek'	20
Solving equations of state using MATLAB [®] (Single equation in one unknown)	21
Example of a chemical engineering problem solved using MATLAB	22
Another example of a chemical engineering problem solved using MATLAB	24
Equations of state with Aspen Plus	26
Specific volume of a mixture	28 32
Chapter summary Problems	32
Tionenis	52
Chapter 3. Vapor-liquid Equilibria	34
Flash and phase separation	34
Isothermal flash – development of equations	35
Example using Excel	36
Thermodynamic parameters	37
Example using MATLAB	39
Example using Aspen Plus	40
Non-ideal liquids – test of thermodynamic model	44 47
Chapter summary Problems	47
Tionenis	47
Chapter 4. Chemical Reaction Equilibria	51
Chemical equilibrium expression	51
Example of hydrogen for fuel cells	52
Solution with Excel	53
Solution using MATLAB	55
Chemical equilibria with two or more equations	57
Multiple equations, few unknowns with MATLAB	57
Method 1 using the 'fsolve' command Method 2 using the 'fminscereh' function	57
Method 2 using the 'fminsearch' function	58

Variations in MATLAB	59
Chemical Equilibria with Aspen Plus	60
Chapter summary	61
Problems	61
Chapter 5. Mass Balances with Recycle Streams	64
Mathematical formulation	64
Example without recycle	66
Example with recycle; comparison of sequential and simultaneous solution methods	69
Example of process simulation using Excel for simple mass balances	70
Example of process simulation using Excel including chemical reaction equilibrium	71
Example of process simulation using Excel including phase equilibrium	73
Chapter summary	75
Class exercises	75
Class discussion	75
Problems	76
Chapter 6. Simulation of Mass Transfer Equipment	82
Thermodynamics	82
Example: multicomponent distillation with shortcut methods	84
Mathematical development	85
Example: multicomponent distillation with rigorous plate-to-plate methods	90
Example: packed bed absorption	92
Example: gas plant product separation	94
Chapter summary	96
Class exercise	96
Problems (using Aspen Plus)	96
Chapter 7. Process Simulation	98
Model library	98
Example: Ammonia process	99
Utility costs	106
Convergence hints	109
Optimization	111
Chapter summary	115
Class exercise	116
Problems	116
Chapter 8. Chemical Reactors	118
Mathematical formulation of reactor problems	118
Example: plug flow reactor and batch reactor	119
Example: continuous stirred tank reactor (CSTR)	120
Using MATLAB to solve ordinary differential equations	121
Simple example	121
Use of the 'global' command	123
Passing parameters	124

	Example: isothermal plug flow reactor	124
	Example: non-isothermal flow reactor	127
	Using FEMLAB to solve ordinary differential equations	130
	Simple example	130
	Example: isothermal plug flow reactor	132
	Example: non-isothermal flow reactor	132
	Reactor problems with mole changes and variable density	137
	Chemical reactors with mass transfer limitations	138
	Continuous stirred tank reactors (CSTR)	142
	Solution using Excel	143
	Solution using MATLAB	143
	CSTR with multiple solutions	144
	Solutions to multiple equations using MATLAB	144
	Transient continuous stirred tank reactors (CSTR)	145
	Chapter summary	149
	Problems	150
(Chapter 9. Transport Process in 1D	155
	Applications in chemical engineering – mathematical foundation	155
	Heat transfer	155
	Diffusion and reaction	156
	Fluid flow	157
	Unsteady heat transfer	159
	Example: Heat transfer in a slab	160
	Example: Reaction and diffusion	163
	Parametric solution	164
	Flow of a Newtonion fluid in a pipe	167
	Example: Flow of a Non-Newtonion in a pipe	169
	Example: Transient Heat Transfer	171
	Example: Liinear Adsorption	174
	Example: Chromatography	177
	Chapter summary	180
	Problems	180
(Chapter 10. Fluid Flow in 2D and 3D	184
	Mathematical foundation of fluid flow	185
	Navier-Stokes equation	185
	Non-Newtonian fluid	186
	Example: Entry flow in a pipe	187
	Example: Entry flow of a non-Newtonian fluid	193
	Example: Flow in microfluidic devices	195
	Example: Turbulent flow in a pipe	198
	Example: Start-up flow in a pipe	201
	Example: Flow through an orifice	203
	Example: Flow in a serpentine mixer	209
	Boundary conditions	211

Non-dimensionalization	212
Chapter summary	215
Problems	215
Chapter 11. Convective Diffusion Equation in 2D and 3D	218
Convective diffusion equation	218
Non-dimensional equations	219
Boundary conditions	220
Example: heat transfer in two dimensions	221
Example: heat conduction with a hole	224
Example: dispersion in microfluidic devices	226
Effect of Peclet number	228
Example: concentration-dependent viscosity	232
Example: viscous dissipation	233
Example: chemical reactor	235
Example: wall reactions	236
Example: mixing in a serpentine mixer	236
Chapter summary	238
Problems	238
Appendix A. Hints when using Excel	245
Cell organization, Cell contents, Format	245
Comments, Pictures, equations, web links	246
Select columns for charts, regression and printing	246
Copy formulas across and down the spreadsheet, Insert rows and columns	246
Split/freezing	247
Iteration on, tolerance	248
Paste, Plot - xy scatter, edit, multiple curves, surface plots	249
Arrange spreadsheet	251
Import and export text files, one column at a time	252
Import and export text files, multiple columns	252
Export a text file, Tools	252
Functions, Matrices, Excel help, Applications of Excel	253
Appendix B. Hints when using MATLAB®	255
General features	255
Start the program, Screen format, Stop/Closing the program	255
m-files, Workspaces and transfer of information	256
'Global' command	257
Display tools, Finding MATLAB errors	258
Debug the program, i.e. find your errors	259
Input/Output, Loops	260
Conditional statements, Timing information, Matrices	261
Matrix multiplication	262
Element by element calculations	263
Eigenvalues of a matrix, Evaluate an integral	263

Solve algebraic equations using 'fsolve'	264
Solve algebraic equations using 'fzero' or 'fminsearch' (both in standard MATLAB)	264
Integrating ordinary differential equations that are initial value problems	264
Checklist for using 'ode45' and other integration packages	266
Spline interpolation	267
Interpolate data, evaluate the polynomial, plot the result	267
Plotting	267
Plotting results from integration of partial differential equations using method	
of lines	267
Simple plots, Add data to an existing plot	268
Dress up your plot, Multiple plots, 3D plots	269
More complicated plots, Use Greek letters and symbols in the text	270
Matlab help	271
Applications of MATLAB	271
Appendix C. Hints when using Aspen Plus	272
Quick Tour; Start	272
Setup, Model library	273
Place units on flowsheet	274
Connect the units with streams, data entry	275
Specify components, specify properties, Specify the input streams	276
Specify block parameters	277
Run the problem	278
Scrutinize the stream table,	279
Checking your results	280
Transfer the flowsheet and mass and energy balance to a word processing program	
Change conditions, Prepare your report	281
Save your results, Getting help, Applications of Aspen Plus	282
Appendix D. Hints when using FEMLAB	285
Basic FEMLAB techniques	285
Opening screens	285
Equations	285
Draw, Mesh	290
Subdomain settings	290
Boundary settings	292
Solve	292
Postprocessing	295
Surface plots	295
Contour plots	298
Cross-sectional plots	300
Boundary plots	302
Integrals	302
Advanced features	304
Model navigator	306
Internal boundaries	308
	200

Expressions	310
Coupling variables and additional geometries	310
Applications of FEMLAB	313
Appendix E. Parameter Estimation	315
Mathematical formulation	315
Straight line	316
Straight line curve fit using Excel, Plotting the trendline	316
Straight line curve fit using MATLAB	317
Polynomial Regression	318
Polynomial regression using Excel	319
Polynomial regression using MATLAB	319
Multiple Regression using Excel	320
Nonlinear Regression	325
Nonlinear regression using Excel	325
Nonlinear regression using MATLAB	326
Appendix F. Mathematical Methods	328
Algebraic Equations	328
Successive substitution	328
Newton-Raphson	328
Secant method	329
Ordinary differential equations as initial value problems	330
Euler's method	331
Runge-Kutta methods	332
Implicit methods	332
Differential-algebraic equations	333
Ordinary differential equations as boundary value problems	334
Finite difference method	334
Finite element method	335
Initial value methods	338
Finite difference method in Excel	338
Partial differential equations in time and one space dimension	339
Partial differential equations in two space dimensions	341
Finite difference methods for elliptic equations in Excel	342
Summary	343

Preface

Chemical engineering students and chemical engineers are being asked to solve problems that are increasingly complex, whether the applications are in refineries, fuel cells, microreactors, or pharmaceutical plants. Many years ago, students wrote their own programs, first in the FORTRAN programming language, then in languages like MATLAB[®]. With the growth in personal computers, however, software has been written that solves many problems for students, provided they use the programs correctly. Thus, the emphasis shifted from a small group of people who were interested in writing their own programs to a large group of students who will use the programs, but don't write them. In my 38 years of teaching at the University of Washington, I taught those small groups of students how to use numerical analysis to solve complicated problems. Now, I teach *all* my students how to use the computer wisely. Only a few of the students I teach are interested in the numerical analysis (to my sorrow!), but all the students know they must be able to solve difficult problems, and they need to use the computer to do that.

The goals of this book are to illustrate (a) the problems chemical engineers have to solve, (b) the type of computer programs used to solve them, and (c) how engineers check to be sure they have solved the problems correctly. This is done in the context of how contemporary students learn – minimal reading, just-in-time learning, with lots of computer usage. The programs demonstrated here are Excel, MATLAB, Aspen Plus, and FEMLAB.

When writing this book, I assumed that readers are not absolute beginner. Junior and senior chemical engineering students have had experience with spreadsheet programs like Excel, and they can easily learn on the computer when provided a direction and key ideas or phrases. In fact, many students are more computer-savvy than their instructors. However, a beginning chemical engineering student may not know the application very well and may not have gained a solid understanding of the physical phenomena behind an engineering problem. Thus, it is important to give some explanation of why students need to solve certain problems. I have drawn on my experience to give insights into the problems in this book.

My teaching philosophy is that the problems engineers are solving today are usually intractable with analytical methods, but they can be solved with the sophisticated software available today. Thus, every engineer will be solving a problem that no one knows the answer to, and it is the engineer's job to ensure that the problem is posed correctly on paper and in the computer, and it is correctly solved. Engineering students must know how to determine if the computer solved the problem correctly by validating the work done by the computer. If they can do this, they can convince their instructor – or their future boss – that they have a solution that is every bit as reliable as an analytical solution, although without the analytical form and for a problem that can't be solved analytically.

How to use this book in teaching

This book grew out of a course I developed at the University of Washington, first in the Winter quarter, 2003. Student evaluations of the Department indicated that students wanted more help when using the computer to solve chemical engineering assignments. Although the

9

students took a programming course in Computer Science, they didn't feel it was relevant to their engineering studies. I proposed an elective course for juniors that would introduce them to computer programs they would use in their education. It is called *Chemical Engineering Computer Skills* and is a lecture/laboratory course. Enrollment has grown each year, and in 2005, 70% of the junior class enrolled in this course.

As currently taught, I spend one lecture describing a problem and illustrating its solution using the computer programs. Then the class adjourns to a computer classroom where the students work in pairs, with student helpers, solving the same type of problem just demonstrated in class. Finally, the students work individually on a more difficult problem, using the same techniques, for homework credit. All the homework problems have to be correct; if not, an opportunity is given to redo them. The course is taught credit/no-credit, and credit is given provided 80% of the assignments are completed correctly. There are only 10 fifty-minute lectures and 10 laboratory sessions in the 10-week quarter. Since the applications cover much of the chemical engineering field, I joke with the students, saying, "I'm teaching you the entire field in 20 hours."

This book can also be used in a longer course. Once students have solved the elementary problems, it is easy to complicate the problems with lessons and variations that instructors would like to emphasize. Examples of such problems are provided at the end of each chapter; both introductory and advanced problems are provided. Another way to use the book is to use each chapter within different courses. Once chemical reaction equilibrium has been discussed in the Thermodynamics class, for example, instructors can hold a laboratory session that teaches computer applications, using the chapter on chemical reaction equilibrium. Other chapters would be used in other courses. In this way, the students would use the book during their entire education, in course after course. The hope is, of course, that students would then be able to concentrate more on the chemical engineering principles and use the computer as a tool.

There are four programs that are featured in this book. It is possible that your school does not use all four. While the screen images may be different, the ideas and procedures are the same. Certainly the problems can be solved using other programs. In a working environment, engineers use what their company provides. Thus, engineers may use a less powerful program because it is available. The more powerful program may cost more, too. Thus, in several chapters, the same problem is solved using different programs, which lets students see first-hand that the more general purpose programs require significantly more programs in order to solve complicated problems. In my experience, when given a suite of programs, students will use the one that allows them to solve their problem fastest.

Acknowledgements

In writing this book, I owe a great thanks to the students in my classes. The first year there was no written material; students said they wanted it. The second year written material was provided, but it was clear that newer programs like FEMLAB should be emphasized. Many times, a student's question identified something that I didn't know about the program either, so all those graduates of the University of Washington (classes of 2004, 2005, and 2006) deserve my thanks. Special thanks go to Barney Santiago, who taught me one of the tricks in the book,

and Franklin Lobb, an alumnus working for AspenTech who gave valuable suggestions about Aspen Plus. I also thank Jennifer Foley, a graduate student in bioengineering that learned FEMLAB from me, because she taught me in return how to use coupling variables in FEMLAB. The Department provided a challenge grant to write textbooks, funded by a gift in the memory of alumnus Maurice Richford, BS 1926. Without that challenge grant, this book would not have been written. My daughter, Christine Finlayson, improved my writing greatly by serving as a copy editor, and the clarity is due to her work; any confusion left is my responsibility. The folks at Comsol, the makers of FEMLAB, have been very helpful as FEMLAB has been developed and grown over the past few years; Johan Sundqvist and David Kan were my major contacts. Most of all, I thank my wife, Pat, for putting up with the long hours of work that such a project requires. She has always supported me and made sacrifices that enabled me to finish.

Bruce Finlayson Seattle, May, 2005

Chapter 1. Introduction

Computers have revolutionized the way chemical engineers design and analyze processes, whether designing large units to make polyethylene or small microreactors used to detect biological agents. In fact, the engineering problems that many of you will study as undergraduates are similar to in complexity to problems PhD students solved 30 or 40 years ago. Computer programs can now solve difficult problems in a fraction of the time it used to take. Nowadays, you no longer have to write your own software programs to use computers effectively. Computer programs can do the numerical calculations for you, but you'll still need to understand how to apply these programs to specific engineering challenges.

The goal of this book is to help you practice better chemical engineering. Computer are valuable tools that enable progressive, far-reaching chemical engineering. Unfortunately, computers are not as basic as CD players, where you insert a CD, push a button, and get the same result every time. Sometimes computer programs do not work properly for the parameters you have given them. Thus, you must be careful to use them wisely.

This book will also:

- (a) Illustrate the problems that you as chemical engineers may need to solve;
- (b) Compare the types of computer programs you can use and illustrate which ones are best for certain applications;
- (c) Describe how to check your work to ensure you have solved the problems correctly.

This book demonstrates four computer programs: Excel, MATLAB[®], Aspen Plus, and FEMLAB. You may have access to other programs created by other companies. While the exact details won't be the same, the steps you take will be similar.

Computer skills are invaluable, but as an engineer, you also need to understand the physical phenomena. Each chemical engineering application chapter starts with a description of the physical problem in general terms. Then those general terms are put into a mathematical context so the computer can represent them. Next, the chapter gives several examples in which such problems are solved, providing step-by-step instructions so you can follow along on your own computer. Sometimes the same problem is solved using different programs so you can see the advantages of each program. Finally, the chapters give more complicated problems your instructor may use as homework problems.

Examples throughout this book demonstrate how to check your work and how to learn from the answers the computer gives you. When using computers, it's always impotant to know if the computer obtained the correct answer. If you follow this strategy:

- Solve the problem
- Validate your work
- Understand how you reached that answer

you will have no trouble convincing your instructor – or your boss – that you have a solution every bit as reliable as an analytical solution for a problem that can't be solved analytically.

Organization

The book is organized into eleven chapters followed by six appendices as listed in Table 1-1. Each chapter treats a type of chemical engineering phenomenon, such as process simulation or convective diffusion. The six appendices give additional details about each computer program.

As a modern chemical engineering student, many of you are computer-savvy. This book assumes that you are not a complete beginner, but have some experience with spreadsheet programs such as Excel. The chapters provide examples and step-by-step instructions for using the computer programs to solve chemical engineering problems. If needed, you can find more detailed information about the individual programs in the Appendices.

	Chapters	Excel	MATLAB	Aspen Plus	FEMLAB
1	Introduction				
2	Equations of State	\checkmark	\checkmark	\checkmark	
3	Vapor-liquid Equilibria	\checkmark	\checkmark		
4	Chemical Reaction Equilibria	\checkmark	\checkmark	\checkmark	
5	Mass Balances with Recycle Streams				
6	Simulation of Mass Transfer Equipment			\checkmark	
7	Process Simulation			\checkmark	
8	Chemical Reactors		\checkmark		\checkmark
9	Transport Processes in 1D				\checkmark
10	Navier-Stokes Equation in 2D and 3D				\checkmark
11	Convective Diffusion Equation in 2D and 3D				\checkmark
А	Hints when using Excel	\checkmark			
В	Hints when using MATLAB				
С	Hints when using Aspen Plus			\checkmark	
D	Hints when using FEMLAB				\checkmark
E	Parameter Estimation	\checkmark	\checkmark		
F	Mathematical Methods	\checkmark			

Table 1-1. Computer programs used in different chapters

Algebraic Equations. Chapters 2-5 deal with chemical engineering problems that are expressed as algebraic equations – usually sets of non-linear equations, perhaps thousands of them to be solved together. In Chapter 2 you can study equations of state that are more complicated than the perfect gas law. This is especially important because the equation of state provides the thermodynamic basis for not only volume, but also fugacity (phase equilibrium) and enthalpy (departure from ideal gas enthalpy). Chapter 3 covers vapor-liquid equilibrium, and

Chapter 4 covers chemical reaction equilibrium. All these topics are combined in simple process simulation in Chapter 5. This means that you must solve many equations together. These four chapters make extensive use of programming languages in Excel and MATLAB.

Process Simulation. Chapter 6 introduces mass transfer problems such as distillation and absorption. Chapter 7 gives a more detailed look at process simulation, where the power of process simulators like Aspen Plus really is evident. These chapters make use of commercial codes that are run by inserting data into their custom-designed interface.

Differential Equations. Chapters 8, 9, 10, and 11 treat problems that are governed by differential equations. Chapter 8 gives methods to model chemical reactors. These are usually initial value problems, which are illustrated in Eq. (1.1).

$$u\frac{dc}{dz} = -kc^2, \ c(z=0) = c_0$$
(1.1)

Note that the dependent variable, c, is a function of only one independent variable, z, and that the initial value is specified. For reactors, you start at the inlet and integrate down the reactor using either MATLAB or FEMLAB.

Chapter 9 then solves transport problems in one space dimension (1D) using FEMLAB. If you consider heat transfer through a slab, one side of the slab is kept at one temperature, T_0 , and the other side of the slab is maintained at another temperature, T_L . The governing equation is

$$k\frac{d^2T}{dx^2} = 0\tag{1.2}$$

with boundary conditions

$$T(0) = T_0, \quad T(L) = T_L$$
 (1.3)

The differential equation, (1.2), is an ordinary differential equation because there is only one independent variable, x. In this case, equations in one space dimension are boundary value problems, because the conditions are provided at two different locations. While it is also possible to solve this problem using Excel and MATLAB, it is much simpler to use FEMLAB. Transient heat transfer in one space dimension is governed by

$$\rho C_p \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} \tag{1.4}$$

and this problem is solved using FEMLAB, too.

Chapters 10 and 11 use FEMLAB to solve fluid flow, heat transfer, and mass transfer problems in 2D and 3D. Here again the power of the software program shows through. You get to solve real problems that go beyond the simple 1D cases in your textbook. Those 1D problems are good for learning the subject, but in real-life situations, complications often arise that can

only be handled numerically. These problems are partial differential equations, because there are two or more independent variables (say x and y). For example, the Navier-Stokes equations in Cartesian geometry and two dimensions are

$$\rho(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}) = -\frac{\partial p}{\partial x} + \mu(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})$$

$$\rho(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}) = -\frac{\partial p}{\partial y} + \mu(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
(1.5)

Appendices. If you need more background information while solving the problems in the book, consult the appendices. Appendices A-D discuss hints, examples, and step-by-step instructions for the four computer programs demonstrated in this book. For example, Appendix A provides useful options and terminology within Excel, while Appendix B does this for MATLAB. Appendix C provides screen images from Aspen Plus, with explanations, and Appendix D does the same for FEMLAB. Appendix E demonstrates how to use Excel or MATLAB for parameter estimation, and Appendix F illustrates the mathematical methods built into each computer program. While you won't need to program the methods, you may be curious about the mathematical analysis behind the programs.

Whether you tackle one chemical engineering problem or work chapter by chapter through the book, try to enjoy yourself. You and a classmate can sit down and work together – possibly on adjacent computers – to share insights and answer each others' questions. Remember, too: go back and forth from the application chapters to the computer program appendices; build up your knowledge bit by bit. Your reward is to be a better-trained engineer, able to compete in a fast-paced global environment.