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Introduction

The purpose of this project was to calculate the hole pressure of a

Newtonian fluid when fluid is flowing through two flat parallel plates. The

geometry of the hole pressure problem in two dimensions is shown below in

Figure 1. All of the parameters shown below are dimensionless.
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Figure 1. Geometry used to model the 2-D hole pressure problem

Experimental measurements have been made in the past by placing a

pressure transducer at the exit of the hole. The hole pressure was determined

by comparing the pressure forces given by the transducers. Results from

these experiments were inconsistent with one another and a different method

of solving the hole pressure problem was implemented. Although this

problem has been previously solved in two dimensions, the goal was to



prepare a solution in COMSOL Multiphysics for three dimensions and

compare the results from the two models.

Materials and Method

In order to model the two dimensional problem to simulate the three

dimensional problem, the hole on the bottom of the flat plate was

represented as a circle. This circle was divided into many slices as shown in

Figure 2. The hole pressure was calculated in 2D for a slit of the width of a

slice, and the results of all the slits were added to estimate the hole pressure

in 3D.  This result was compared to the hole pressure derived with a 3D

simulation.
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Figure 2. Circular hole divided into several slices



A value of 0.5 was used for the radius and the x2 and x1 values varied

depending on the number of slices. The area of each slice was then

determined using Eqn. 1:
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As a check, the sum of the segmented areas was compared to the area of the

whole circle with a radius of 0.5 and the values were equal.

A two dimensional model was created for each slice of the circle. The

geometry for the two and three dimensional models were created using

COMSOL Multiphysics. As shown in Figure 1 above, the dimensions used

for the two dimensional model were a slit height of 1, a hole depth of 3, a

hole width of 3, and a plate length of 8. The incompressible Navier-Stokes

model was used to solve this problem. The equation governing the

incompressible Navier-Stokes model is given by Eqn. 2:

      ( )( )( ) FuupIuu T +∇+∇+−⋅∇=∇⋅ ηρ      (2)

The parameters applied to Eqn. 2 are as follows: ρ =1, µ =1, Fx=0,

Fy=0, where the Reynolds number is represented by ρ. Boundary conditions

were also implemented for the two dimensional case. At the entrance of the

flat plates, a velocity profile represented by Eqn. 3 was used. 
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At the exit of the flat plates, a condition of zero pressure (po=0) was

implemented. A boundary condition of no slip was applied to the remaining

surfaces.

To obtain the pressures represented by P1, P2, and P3 as shown in

Figure 1, the use of numerical integration was applied at the three

boundaries. The values obtained from COMSOL were then used to calculate

the pressures for each individual segment of the circle from Eqn. 4:
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The total pressure at each location was then calculated using Eqn. 5:
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where Pi is the calculated pressure of each segment and Ai is the area of each

segment.

For the three dimensional case, the same parameters and boundary

conditions were applied in COMSOL. The total hole pressure was obtained

by integrating the three boundaries.



Results

All cases for the two dimensional and three dimensional models

converged in COMSOL.

Figure 3 displays a solution for the two dimensional case with a width

of 1 and a Reynolds number of 1. For this case, the solution was solved with

2624 elements and 12291 degrees of freedom. The different colors within

the model represent velocities.

Figure 3. Sample solution for the two dimensional model



Figure 4 presents the numerical values obtained for the two

dimensional case for a Reynolds number of 1.

Slice Radius Width x2 x1 P1 P2 P3 Area P1*Area P2*Area P3*Area AreaCalc

1 0.5 2/19 0.50 0.45 60.62 60.39 60.65 0.02 0.96 0.96 0.96 0.39
2 0.5 4/19 0.45 0.39 61.25 61.25 61.20 0.03 1.73 1.73 1.73
3 0.5 6/19 0.39 0.34 61.77 61.86 61.85 0.04 2.19 2.20 2.20
4 0.5 8/19 0.34 0.29 62.29 62.43 62.42 0.04 2.54 2.54 2.54
5 0.5 10/19 0.29 0.24 62.79 63.47 63.88 0.04 2.81 2.84 2.86
6 0.5 12/19 0.24 0.18 63.69 63.93 63.45 0.05 3.04 3.05 3.03
7 0.5 14/19 0.18 0.13 63.69 63.93 63.88 0.05 3.18 3.19 3.19
8 0.5 16/19 0.13 0.08 64.09 64.36 64.30 0.05 3.30 3.31 3.31
9 0.5 18/19 0.08 0.03 64.47 64.75 64.67 0.05 3.37 3.39 3.38
10 0.5 1 0.03 0.00 64.64 64.93 64.84 0.03 1.70 1.71 1.71

Total Area 0.39 24.81 24.91 24.89
PH 63.19 63.43 63.39

Figure 4. Numerical values for the two dimensional model

Figure 5 displays the solution for the three dimensional case with a

radius of 0.5 and a Reynolds number of 1. For this case, the solution was

solved with 3669 elements and 19383 degrees of freedom.

Reynolds Number Radius P1 P2 P3 Number of Elements DOF
1 0.5 69.50 69.74 69.54 3669 19383
10 0.5 69.82 69.90 69.87 3669 19383

 

Figure 5. Numerical values for the three dimensional model

After solving for both the two and three dimensional models, a

comparison of the two models were made by taking a cross-sectional plot of

the three dimensional case. Figure 6 shows this comparison.



Figure 6. Cross sectional plot of the three dimensional model

Conclusion

The hole pressures were obtained for P1, P2, and P3 for both two and

three dimensions. Comparing the numerical values obtained, the total hole

pressures for the two dimensional case are slightly lower than the values

obtained for the three dimensional case. This difference in pressure is due to

the velocity at the walls. When taken into account, the two dimensional



pressures increased to a value closer to the values obtained for the three

dimensional case. For both cases, several solutions using various Reynolds

numbers were solved for. A noticeable trend in the results was an increase in

hole pressure with increased Reynolds number.

To ensure that the values obtained are valid, a cross-sectional plot of

the three dimensional model was made. The velocity profile from Figure 6

matches very closely to the velocity profile of Figure 2.



Appendicies

Appendix A: Incompressible Navier-Stokes Equation

( )( )( ) FuupIuu T +∇+∇+−⋅∇=∇⋅ ηρ

where _ is the Reynolds number, _ is the viscosity and F is the volume force

Appendix B: Sample Calculations

Calculating area for each segment:
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Calculating the pressure for each segment:

∫
∫=
dA

PdA
Pi

76.60
105.0
38.6

==iP



Calculating the total pressure for each boundary:
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61.63
39.0
81.24

==HP


