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Objectives

This project had two main objectives.  The primary objective was to develop a
Femlab computer model for mixing in a small volume via the injection and subsequent
aspiration of a high concentration fluid.  The secondary objective was to compare the
mixing time predicted by this model with published experimental data (Nealon 2006)1.

Problem

The particular model in question involved the addition of 90 µL of a concentrated
fluid through a pipette tip into a flat-bottomed cylindrical microwell containing 200 µL of
stagnant liquid.  This was to be followed by the removal of 90 µL through the same
pipette tip (Fig 1).

Figure 1: Not-to-scale diagram of microwell mixing problem.  90 _L of high concentrated
fluid is injected and then aspirated from a microwell initially containing 200 _L.

This problem proved to be difficult to solve not only because a
convection/diffusion problem had to be evaluated simultaneously with a fluid dynamics
problem, but also because the model had to account for a moving, deformed boundary at
the surface of the fluid in the microwell.

                                                  
1 Nealon, Anthony J., Ronan D. O'Kennedy, Nigel J. Titchener-Hooker, Gary J. Lee. "Quantification and
prediction of jet macro-mixing times in static microwell plates." Chemical Engineering Science 61(2006):
4860-4870.



Procedure

Equation System

There are two primary equation systems that must be solved simultaneously in
this problem.  The first is a momentum balance represented by the incompressible Navier
Stokes equation as shown in Fig 2.

Figure 2: The incompressible Navier-Stokes equation.

The second equation is a mass transfer equation accounting for convective and
diffusive driving forces as shown in Fig 3.

Figure 3: The mass transfer equation used to account for convection/diffusion.

These two equation systems would be evaluated using the Comsol Multiphysics
package of Femlab.

Parameters

The parameters defining the fluid properties were approximated using common
values for water at standard temperature and pressure.  In particular, the model used a
fluid density of 998 kg/m3 and a dynamic viscosity of 0.001 Pa_s.  The diffusion
coefficient defining the rate of mass transfer of the “solute” in the model was set at 10-5

m2/s.  This coefficient, which is determined by the chemical properties of both the solute
and solvent (water in this case).  Because the solute in this case is not specified, a
“predictable” or “common” value for the diffusion coefficient was assumed to be 10-9

m2/s.  Hence, the model solution presented in this report is greater than this common
value by four orders of magnitude.  As will be explained later, the reason for this decision
was that a convergent solution could not be obtained when modeling with such a low
value for the diffusion coefficient.

Domain Geometry

The geometry of this problem was modeled in two dimensions, assuming
symmetry about the center axis (axisymmetricgeometry).  In this fashion, we assume that
the fluid velocity vector into and out of the page is zero at all times.  Similarly, we
assume that particle diffusion within the fluid does not take place in the directions into
and/or out of the page.  Although this may not generate truly accurate results, modeling
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the entire vessel geometry in three dimensions would be extremely time consuming, and
could prove to be too stressful a model for the computing power that we had at hand.

The microwell diameter as well as the pipette tip diameter were obtained from the
Nealon article, allowing the calculation of the initial height of the domain representing
the initial fluid in the microwell.  The pipette tip geometry was extended well above the
surface of the fluid in the microwell, allowing the flow within the tip to become fully
developed by the time the fluid exits the pipette tip.  It was assumed that the pipette tip
extends 0.001 m below the surface of the liquid in the microwell.  This geometry can be
observed in Fig 4, where all given dimensions are in meters.

Figure 4: Domain geometry of the microwell mixing model.  All dimensions are in
meters.  The domain is 2-dimensional and is axis-symmetric about R=0 m.

Domain Mesh

In order to solve this problem computationally, the domain is
divided into several smaller geometries using a mesh.  In this way,
each mesh element is assumed to have uniform properties, including
velocity, concentration, etc.  The refined mesh used to generate the
solution given in this report is shown in Fig 5.  Note that near the
finer features of the domain geometry, mesh elements decrease
substantially in size, and increase substantially in number.  The mesh



in this model contains 1,812 individual elements, 154
boundary elements, generating 20,438 degrees of freedom.

Boundary Conditions

In addition to specifying the domain geometry and the appropriate fluid
properties, we must also specify the boundary conditions for each equation model applied
to the system.  Although there are only two equation systems that we are solving for in
this problem, there are really three different models applied to the system.  For each
boundary in the
domain, we must
specify conditions
for  the  f lu id
dynamics model,
the

convection/diffusion model, and the moving-mesh model that
allows for deformation and displacement of the free fluid surface
(the surface at the top of the fluid in the microwell).  Each
boundary of the domain is assigned a number as shown in Fig 6.
The specified conditions for each of these domains in each of the
three models are described in Table 1.

Fluid Dynamics
Boundaries

• No Slip:
fluid
touching
the
boundary does not move.

• Slip Symmetry: fluid is allowed to move parallel to the boundary.
• Axial Symmetry: fluid is allowed to move in the direction of the axis only.

# Description Fluid Dynamics Conv/Diff Moving Mesh
1 Center Axis Axial Symmetry Insulation Displacement=0 m
2 Well Bottom No Slip Insulation Displacement=0 m
3 Inlet Inflow Velocity C= 1 mol/L Displacement=0 m
4 Pipette Wall No Slip Insulation Displacement=0 m
5 Pipette Edge Slip Symmetry Insulation Displacement=0 m
6 Inner Well Wall (near surface) Slip Symmetry Insulation Displacement=0 m
7 Fluid Surface Neutral Convective Flux Velocity= u*nr+v*nz
8 Well Wall No Slip Insulation Displacement=0 m
9 Outer Well Wall (near surface) Slip Symmetry Insulation Displacement=0 m

Figure 5: Refined domain mesh
containing 1,812 elements.

Table 1: Boundary conditions.

Figure 6: Domain boundaries.



Conv/Diff Boundaries
• Insulation: material can not diffuse into or out of the boundary.
• C = 1 mol/L: an arbitrary concentration set at the inlet.  Initial concentration

of the rest of the domain is at 0 mol/L.
• Convective Flux: material is allowed to move with the flow.

Moving Mesh Boundaries
• Displacement = 0 m: the mesh boundary can not move.
• Velocity = u*nr+v*nz: allows the mesh along the boundary to move and

deform according to the radial velocity of each element (u), the axial velocity
of each element (v) and the respective vectors nr and nz.

Entrance Velocity

The entrance velocity (velocity at boundary 3) is key parameter for controlling the
addition and subsequent removal of fluid from the microwell.  The experimental data on
which this model is based injected fluid through the pipette tip at a Reynolds number of
3000.  Unfortunately, a computer solution could not be achieved with a Reynolds number
this high.  The highest Reynolds number for which we obtained results was 162.  This is
obviously a significant difference, and as such, our results could not be correlated to
experimental data.  However, our model was able to generate a predicted mixing time and
concentration profile for the parameters used.

Furthermore, it became necessary to control the velocity such that after 90 µL had
been added, the inlet velocity changed sign such that fluid was removed.  Although this
could be done with a simple Boolean expression, such a discontinuous function generated
serious complications when attempting to compute a solution.  The way around this
problem was to establish a continuous function of velocity over time.  A periodic
function was calculated using the equations shown in Fig 7.  Figure 8 shows how the
specific velocity function used was calculated.
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Figure 7: Equations for generating a periodic velocity function.



Results

Once a convergent solution was obtained, the resulting model could be displayed
graphically in an number of different ways, depicting the concentration gradient, velocity
gradient, streamlines, and many other parameters at several time points.  An example is
shown in Fig 9, where we can observe a specific band of concentration at an intermediate
time, as the well is still being filled with fluid.  In this figure, it is easy to see the
diffusion of the “solute” through the fluid as well as the deformation of the fluid surface.

Figure 8: Calculations and plot of the velocity function used in the computer model.



Figure 9: Concentration gradient from 0 to 0.25 mol/L at time t = 0.65 s.

We can also observe streamlines at each time point, which represent the path of
individual particles in the fluid.  This can be useful for demonstrating flow patterns
within the microwell.  In Fig 10, we notice that the fluid circulates in the lower half of the
well, while in the upper half, at t = 2.3 s (at time at which fluid is being aspirated out of
the well) the fluid is falling back towards its initial position in relatively straight
“streams.”



Figure 10: Streamlines depicting flow patterns of individual particles through the fluid at
t = 2.3 s.  At this time point, fluid is being aspirated out of the microwell.

These graphs show clearly that this particular problem can be modeled using
computational fluid dynamics.  However, in order to generate a prediction for the
“mixing time” (time at which the fluid is “well mixed”), we must perform statistical
analysis on the model at each time point.  In order to determine the time at which the
fluid becomes well mixed, we will look at the variance in concentration at each time
point.  The concentration variance can be calculated with the equations shown in Fig 11.

Figure 11: Equations used to calculate the concentration variance at each timepoint.

Using these equations, we can calculate the variance and standard deviation in the
concentration over the whole domain at each time point.  These data points were exported
to a spreadsheet and the graph shown in Fig 12 was prepared.
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Figure 12: Variance and Standard Deviation of concentration over time.  The fluid
becomes well mixed at time t = 2.35s.

In Fig12, we can see clearly that the initial variance in concentration is 0 mol2/L2,
meaning the entire domain has a uniform concentration (at 0 mol/L).  Upon adding
concentrated fluid, the variance immediately spikes, indicating that the solution is not
mixed (i.e. there are regions at very high concentration and regions at very low
concentration).  The variance then gradually reduces over time as the fluid becomes
mixed, and drops off even more rapidly as the extremely concentrated portions of the
fluid are aspirated out of the microwell.  The variance then reduces to near zero values as
the solution concentration becomes nearly uniform.

We will assume that the fluid becomes well mixed when 95% of the fluid falls
within two standard deviations of the mean concentration (95% confidence).  Based on an
average final concentration value of approximately 0.247, the mixing time value is
approximately 2.35 seconds.

Conclusion

The results of this project indicate clearly that difficult fluid dynamics problems
involving moving interfaces can be modeled using computers.  Such computer analysis
also provides the ability to analyze results from a number of perspectives (concentration,
velocity, etc) and at a number of different time points.  However, such computer
modeling has severe limitations.  Often, coercing such computer models into producing a



convergent solution is as much art as it is science; several iterative techniques must be
used in order to generate results.  Furthermore, computer modeling is often an “all or
nothing” approach.  Testing a small change in the simulation parameters can mean hours
of wasted time as the computer reaches a time step where a solution can not be found.
Obviously choice of hardware and software plays a key factor in determining these sorts
of limitations.


