
Ha Dinh and Lisa Dahl
Fall 2007

CHEM E 499, Finlayson

1

Determination of the KL for Laminar Flow
in Square and Circular Pipe Fittings

By Ha Dinh and Lisa Dahl

Fall 2007
CHEM E 499, Finlayson



Ha Dinh and Lisa Dahl
Fall 2007

CHEM E 499, Finlayson

2

I.  Introduction

The pressure drop coefficient KL is a parameter used for calculating the excess pressure drop for

laminar flow in non-standard geometries.  KL accounts for the bends in pipe geometries by

scaling the normal pressure drop over a straight section of a square or circular pipe in fully

developed flow.  The fully-developed pressure drop is calculated using the Hagen Pouiseuille

Law, where

€ 

Δpfd = 32ηL < v >
d2

 (A)

is used for a pipe with a circular cross-section, where _ is the viscosity, L is the length of the

pipe, <v> is the average flow velocity in the pipe and d is the diameter of the pipe.  For a square

cross-section,

€ 

Δpfd = 28.4ηL < v >
d2

 (B)

is used, where the only difference is the coefficient of 28.4.

In order to find KL values applicable to any size geometry, all parameters used in

defining the model and calculating the pressure drop are under non-dimensional parameters.

Under this condition, the non-dimensional pressure standard ps is given by

d

v
ps

><
=Δ
η

                                                            (C)

and the total excess pressure can be calculated using the following:

fdsexcess pppp Δ−′=Δ                                                      (D)

where p’ is the inlet pressure measured in a standard non-dimensionalized model, which can be

measured using a program such a COMSOL Multiphysics.  Once the excess pressure drop is

calculated, the excess pressure drop coefficient can be found by

><

Δ
=

v

dp
K excess
L η

                                                          (E)

where the value of KL is unitless.  From this, the KL values of several types of geometries can be

tabulated and compared as examined in the following.  The two conditions examined are for the

KL under a Reynolds number and flow viscosity equal to 1 and then the variation of KL over

Reynolds numbers ranging from 0 to 100.

The Reynolds number is related to the pressure drop in flow through the Navier-Stokes

equation, which for the laminar flow cases discussed here is represented by:
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€ 

Re∂u'
∂t'

+ Reu'•∇'u'= −∇' p'+∇'2u' (F)

The kinematic viscosity is related to the Reynolds number by the following equation:

€ 

η =
ρusxx
Re

(G)

where Re is the Reynolds number, ρ is the density, us is the non-dimensional velocity standard

and xs is the non-dimensional distance standard.  As the program COMSOL allows both the

density and the viscosity to be specified, either can be solved for using equation G in order to

vary the Reynolds number of the flow throughout the model.  In the cases solved for, the

Reynolds number was expressed as 10x, where x ranged in value from 0 to 2.  This gave a total

Reynolds number range of 0 to 100, over which the change in KL was plotted.
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II. Model Used and Procedure

The model of Steady-State Navier-Stokes under the Chemical Engineering Module was

used in COMSOL Multiphysics.  Non-dimensional parameters were used to give a nonspecific

solution.  For all geometries examined, the density of the entire subdomain was set to 0 and the

viscosity was set to 1 (slow flow or Stokes flow), or the density was set to 1 and the viscosity

was set to 1/Re. In each model, the inlet surface boundary condition was set to laminar

inflow/outflow to allow for fully developed flow throughout the pipe.  All exterior walls were set

to a no-slip boundary condition while the outlet at the top right was set to have normal flow with

a pressure of 0.

All of the geometries examined are listed in Table 1, along with the lengths of their

straight sections and entire centerline.  Also listed are the fully developed pressure drops for each

length case, calculated using Equations A and B.

Table 1: Geometries Modeled with Lengths and Fully Developed Pressure Drops

Pipe Geometry
Straight
Length

Centerline
Length

Straight _pfd (Pa) Centerline _pfd (Pa)

SQUARE 45° ELL 4.0 4.4 113.6 124.960

SQUARE
180° TURN,

SHORT 12.0 14.0 340.8 397.600

SQUARE
180° TURN,

LONG 20.0 22.0 568 624.800

CIRCULAR
45° ELL,

STANDARD
RADIUS

8.0 8.785 256.0 281.120

CIRCULAR
45° ELL, LONG

RADIUS 8.0 9.178 256.0 293.696

CIRCULAR
90° ELL,

STANDARD
RADIUS

8.0 9.571 256.0 306.272

CIRCULAR
90° ELL, LONG

RADIUS 8.0 10.356 256.0 331.392

CIRCULAR
180° BEND,

CLOSE
RETURN

8.0 9.571 256.0 306.272

CIRCULAR
180° BEND,

LONG RETURN 12.0 13.571 384.0 434.272

All of the pipes had standard dimensionless diameters of 1.  For the square pipe geometries,

different straight section lengths were examined.  The square 45° ell geometry had straight

sections lengths of 2 on either side of the bend.  The square short 180° turn had straight lengths

of 4 on each side of the turn and in between them, whereas the square long 180° turn had straight
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lengths of 6.  Figures 1 and 2 demonstrate the 3D models in COMSOL for the square pipe

geometries, where the fully-developed streamlines are modeled using red lines.

Figure 1: COMSOL Model of a Square Pipe with a 45° Ell

Figure 2: COMSOL Models of a Square Pipe with 180° Bend, short (left) and long (right)

All of the circular pipe geometries had straight section lengths of 4 whereas the radii of the bends

were differentiated between short and long, based on standards listed in Perry’s Chemical

Engineering Handbook (Table 10-27).  In general, a short radius has the same inner bend radius

as the diameter of the pipe and a long radius has an inner bend radius equivalent to 1.5 times the

diameter of the pipe. Figures 3 through 5 show all of the circular pipe geometries used including

both the short and long radius versions.
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Figure 3: COMSOL Models of Circular Pipe with 45° Bend, short radius (left) and long radius (right)

Figure 4: COMSOL Models of Circular Pipe with 90° Bend, short radius (left) and long radius (right)

Figure 5: COMSOL Models of Circular Pipe with 180° Bend, close return (left) and long return (right)

Streamlines were plotted for all of the geometries at a Reynolds number of 100 to ensure fully

developed flow was present throughout the entire pipe length in each case.  The solved model

then had its inlet pressure recorded and graphed over varying Reynolds numbers to solve for KL.
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III. Results and Discussion

All models were solved under three meshes of increasing complexity and degrees of freedom.

As the final result KL seemed to converge with a higher mesh, the results of the third mesh were

used as the results.  Table 2 lists the result of KL for each geometry modeled.

Table 2: Final Results for the Excess Pressure Drop Coefficient KL

Pipe Geometry
KL

(Straight
Length)

KL (Centerline
Length)

SQUARE 45° ELL 10.4 -0.95

SQUARE
180° TURN,

SHORT 41.2 -15.6

SQUARE
180° TURN,

LONG 39.2 -17.6

CIRCULAR
45° ELL,

STANDARD
RADIUS

24.9 -0.2

CIRCULAR
45° ELL, LONG

RADIUS 37.5 -0.2

CIRCULAR
90° ELL,

STANDARD
RADIUS

49.8 -0.4

CIRCULAR
90° ELL, LONG

RADIUS 75.1 -0.3

CIRCULAR
180° BEND,

CLOSE
RETURN

100 49.8

CIRCULAR
180° BEND,

LONG RETURN 86.4 29.6

Two KL values were considered for these results.  The first KL value is known as the “straight

length” value where the pressure drop including only the length of the straight sections of the

pipe were subtracted from the excess pressure found through COMSOL.  The second value

subtracts a pressure drop which includes the entire centerline length of the pipe, assuming fully

developed plow along the axis.  Most of the cases, particularly the 45° and 90° geometries, have

lower KL values when the centerline length is included.  This is expected because fully

developed flow should be present throughout most of the pipe, and any excess changes in

pressure should be due to changes in the flow directly near the deviations in the geometries.

More unpredictable values for the KL values are exhibited in the geometries with 180°

turns or bends.  In all four cases listed in Table 2, very large KL values are seen even when the

entire centerline of the pipe is included.  This could possibly be due to the sharp changes in
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direction and momentum for the fluid in the pipe, which should have some contribution to the

overall pressure drop of the fluid.

Also of note is that negative KL values have little meaning with regards to calculating the

excess pressure drop in an abnormal geometry.  Therefore, all negative values found in the

results over varying Reynolds numbers were graphed with their absolute values only.  Figures 6

to 14 show how the value of KL changes under each geometry and length consideration (straight

or centerline), where any negative KL values are graphed using a dashed line.  All plots are under

a log-log axes to examine for any linear variation.

Square Pipe, 45 Degree Ell (Straight Length)
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Square Pipe, 45 Degree Ell (Centerline Length)

0.1

1

10

100

1 10 100

Reynolds Number

K
L

Figure 6: KL over varying Re for the square 45° bend model, straight (left) and centerline (right)

Square Pipe, 180 Degree bend, short model
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Figure 7: KL over varying Re for the square 180° bend, short model, straight (left) and centerline (right)
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Square Pipe, 180 Degree Bend, Long 
model
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Figure 8: KL over varying Re for the square 180° bend, long model, straight (left) and centerline (right)

All of the square pipe geometries demonstrate the same type of change over Reynolds number

when the centerline is included in the fully developed pressure drop calculation.  All KL values

for Reynolds numbers below the value 20 tend to be negative for all square geometries, while all

solutions with Re greater than 20 have positive KL values that increase very dramatically up to an

Re equivalent to 100.

The circular pipe geometries show the same kind of negative-to-positive switch in KL

value at Reynolds numbers between 19 to 20 for the 45° bend models and 15 to 16 for the 90°

bend models.

Circular Pipe, 45° Bend, Short Radius 
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Figure 9: KL over varying Re for the circular 45° short radius model, straight (left) and centerline (right)
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Circular Pipe, 45° Bend, Long Radius 
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Figure 10: KL over varying Re for the circular 45° long radius model, straight (left) and centerline (right)

Circular Pipe, 90° Bend, Short Radius 
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1

10

100

1000

1 10 100

Reynolds Number

K
L

Circular Pipe, 90° Bend, Short Radius 
(Centerline Length)

0.1

1

10

100

1 10 100

Reynolds Number

K
L

Figure 11: KL over varying Re for the circular 90° short radius model, straight (left) and centerline (right)
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Circular Pipe, 90° Bend, Long Radius 
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Figure 12: KL over varying Re for the circular 90° long radius model, straight (left) and centerline (right)

In comparison to the trends shown by Figures 9 through 12, the 180° bend geometries exhibited

similar behavior as demonstrated in Figure 13.

Circular Pipe, 180 Degree, Close 
Return (Straight Length)
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Circular Pipe, 180 Degree, Close Return, 
Centerline Length
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Figure 13: KL over varying Re for the circular 180° short radius model, straight (left) and centerline (right)

In all cases, the KL values over varying Reynolds numbers demonstrated similar trends, where

increasing the Reynolds number generally led to increasingly negative KL values past Re = 15 to

16.  For the circular pipe 180° models this increase happened much more quickly, at about

Reynolds numbers slightly over 2 as shown in Figure 13.  In general, however, including the

center-line length when calculating the fully-developed pressure drop over-accounts for the total
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pressure drop in the geometry, as demonstrated by the negative KL values achieved in all cases

for all high Reynolds numbers.

In most cases, the overall pressure coefficient results depicted in Table 2 show that

including the length of the centerline when calculating the pressure drop of a fitting overaccounts

for the total pressure difference, as shown through the negative values of the centerline pressure

drop coefficients.  The 180° turns show an opposite trend in that they have larger positive KL

values that become more negative as the Reynolds number is increased.  Therefore, when

calculating a dimensional, isolated pressure drop of a fitting with a 45° or 90° bend, it is

recommended that the KL found through using the straight lengths be used as opposed to the

center-line values.  This is because it the straight length coefficients account for the difference

between the straight sections of the pipe and the fitting, so using this KL with the corresponding

Hagen-Pouiseuille equation will find the contribution to the pressure drop from the fitting only.

All of the Reynolds number analyses were performed at only a second mesh, so it is

recommended that future research examines the variations at a third or fourth mesh in order to

confirm the trends found above.  In addition, recalculating the single KL values at higher meshes

for all of the pipe geometries will allow for a converging value to be determined.  The overall

results reported here are reported to one decimal point and can give a general idea of a fitting’s

contribution to the overall pressure drop in a pipe at any dimension, yet further analysis is

beneficial to increasing the accuracy of these results.
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Appendix_____________________________________________________________________

I.  Sample Calculations

A. Calculating the non-dimensional parameter ps

The non-dimensional parameter ps is given by:

d

v
ps

><
=Δ
η

1
)1(

)1)(1(
==Δ sp

B. Calculating the fully developed pressure drop:
The pressure drop was approximated using the Hagen-Pousiuelle law.
For fully developed flow, the pressure drop across a square straight pipe is given by:

€ 

Δpfd = 28.4ηL < v >
d2

The pressure drop across a circular, straight pipe with fully-developed flow is:

€ 

Δpfd = 32ηL < v >
d2

Example using the square pipe with a 45° ell:
Using only the straight, rectangular sections of the geometry: L = 2.0 + 2.0 = 4.0

Pa
m

smmsPa

d

vL
p fd 6.113

)1(

)/1)(4)(1(
4.284.28

22
=

⋅
=

><
=Δ

η

Using only the length along the entire centerline of the pipe: L = 2.2 + 2.2 = 4.4

Pa
m

smmsPa

d

vL
p fd 96.124

)1(

)/1)(4.4)(1(
4.284.28

22
=

⋅
=

><
=Δ

η

C.  Calculating the excess pressure due to the abnormal geometry:
The excess pressure can be given by:

fdsexcess pppp Δ−′=Δ

Where the pressure p’ is measured by Comsol using boundary integration for pressure at
the inlet, multiplied by the non-dimensional parameter ps.  For L = 4.0 (straight,
rectangular sections only) with the second mesh:

4.106.113005662.124 =−=Δ excessp s

For L = 4.4 (including the entire pipe centerline) with the second mesh:
95.096.124005662.124 −=−=Δ excessp

D. Calculating KL using the excess pressure:
The value of KL is given by the equation:

><

Δ
=

v

dp
K excess
L η

As all parameters except _pexcess are equal to 1, KL = _pexcess with the values in C above.
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E. Relating the Reynolds number to the Kinematic Viscosity
The Reynolds number is dependent on the kinematic viscosity by:

ηηη

ρ 1)1)(1)(1(
Re === ss xu

Therefore, the kinematic viscosity in the boundary conditions can be defined as:

x10

1

Re

1
==η

Where x varies from 0 to 2 in increments of 0.1.  This led to the solutions Figures 2 and 3
represent above.

II. Mesh Tables and Results for Each Geometry with _ = 1

SQUARE 45° ELL
Mesh #1 Mesh #2 Mesh #3

Points 374 1090 3113
Elements 1305 4641 14436

DOF 12391 27885 72982
pinlet = p’ps 124.5842 124.1048 124.0056
pexcess = KL 11.0 (-0.37) 10.5 (-0.86) 10.4 (-0.95)

SQUARE 180° TURN, SHORT
Mesh #1 Mesh #2 Mesh #3

Points -- -- --
Elements 874 2775 8110

DOF 5647 14431 40952
pinlet = p’ps 405.4624 383.9993 381.9864
pexcess = KL 64.7 (7.9) 43.2 (-13.6) 41.2 (-15.6)

SQUARE 180° TURN, LONG
Mesh #1 Mesh #2 Mesh #3

Points -- -- --
Elements 2896 7639 20578

DOF 15809 39686 101097
pinlet = p’ps 617.1850 611.6224 609.2034
pexcess = KL 49.2 (-7.6) 43.6 (-13.2) 39.2 (-17.6)

CIRCULAR 45° ELL, STANDARD RADIUS
Mesh #1 Mesh #2 Mesh #3

Points 758 2166 6434
Elements 2591 9594 29848

DOF 14775 46261 140151
pinlet = p’ps 280.6611 280.832 280.8731
pexcess = KL 24.7 (-0.4) 24.8 (-0.3) 24.9 (-0.2)
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CIRCULAR 45° ELL, LONG RADIUS
Mesh #1 Mesh #2 Mesh #3

Points 804 2334 6795
Elements 2751 10323 31629

DOF 15679 49810 148288
pinlet = p’ps 293.1489 293.4766 293.5210
pexcess = KL 37.1 (-0.5) 37.5 (-0.2) 37.5 (-0.2)

CIRCULAR 90° ELL, STANDARD RADIUS
Mesh #1 Mesh #2 Mesh #3

Points 816 2381 6951
Elements 2794 10562 32320

DOF 15928 50871 151645
pinlet = p’ps 305.6111 305.7367 305.8322
pexcess = KL 49.6 (-0.7) 49.7 (-0.5) 49.8 (-0.4)

CIRCULAR 90° ELL, LONG RADIUS
Mesh #1 Mesh #2 Mesh #3

Points 878 2540 7459
Elements 3006 11200 34744

DOF 17136 54087 162938
pinlet = p’ps 330.8694 330.9703 331.0752
pexcess = KL 74.9 (-0.5) 75.0 (-0.4) 75.1 (-0.3)

CIRCULAR 180° BEND, CLOSE RETURN
Mesh #1 Mesh #2 Mesh #3

Points 961 2828 8305
Elements 3293 12589 38712

DOF 18758 60531 181340
pinlet = p’ps 279.3635 279.4116 279.4761
pexcess = KL 99.9 (49.6) 99.9 (49.7) 100 (49.8)

CIRCULAR 180° BEND, LONG RETURN
Mesh #1 Mesh #2 Mesh #3

Points 1264 3642 10866
Elements 4331 16336 50593

DOF 1009 78247 237079
pinlet = p’ps 379.7859 379.85425 379.9244
pexcess = KL 99.8 (49.5) 86.3 (29.5) 86.4 (29.6)


